Maple Flow 2024 brinda fácil acceso a nuevas funciones de productividad y potentes capacidades matemáticas, para que los ingenieros puedan realizar análisis matemáticos y presentarlos en hojas de trabajo de proyectos de alta calidad.

Estas mejoras demuestran el fuerte compromiso de Maplesoft de proporcionar una herramienta de cálculo de ingeniería confiable, que sea fácil de aprender, ahorre tiempo a los ingenieros y satisfaga todas sus necesidades de cálculo. Maple Flow está resultando de gran popularidad entre las empresas de ingeniería civil, mecánica y eléctrica, y en los últimos 12 meses se ha producido el cambio de muchos usuarios de Mathcad 15 a Maple Flow.

Entre lo más destacado de Maple Flow 2024 podrá encontrar:

  • Complete fácilmente cualquier comando: obtenga el resultado correcto cada vez, incluso con comandos desconocidos, al tener la finalización automática de argumentos para guiarlo a través de las opciones.
  • Navegador de matrices en línea: ahora puede desplazarse por matrices y vectores grandes directamente dentro de su documento con el navegador de matrices en línea, manteniendo al mismo tiempo una vista compacta de la matriz.
  • Insertar variables desde la paleta Variables: omita escribir nombres de variables complejos, insertando variables directamente usando la paleta Variables.
  • Aumento del rendimiento. Esta versión de Maple Flow admite gráficos de datos más grandes y evalúa hojas de trabajo más rápido.
  • ¡Y más!

Por Josué Zable.

Escuche, no soy un programador. No estoy en contra de programar. De hecho, tengo mucho respeto por las personas que son capaces de codificar. Simplemente no creo que a las personas que no se ganan la vida programando se les deba pedir que codifiquen para ganarse la vida. Por otra parte, tampoco creo que la gente deba tener pitones como mascotas. Y, sin embargo, cientos de miles de personas lo hacen.

Pero si su jefe quiere que utilice Python, estoy aquí para ayudarle. Si su jefe quiere que tenga como mascota una pitón, mejor consiga un nuevo trabajo (a menos que sea cuidador en un zoológico, en cuyo caso… ¡genial!).

¿Qué es Python?

Según The Python Software Foundation, Python es un lenguaje de programación interpretado, orientado a objetos, de alto nivel y con semántica dinámica. Hay muchos lenguajes de programación, pero Python se ha vuelto muy popular debido a su sintaxis relativamente fácil de aprender y al hecho de que admite módulos y paquetes. Añada un nombre atractivo y una biblioteca estándar disponible sin coste (¡es gratis!) y no es de extrañar por qué puede tener un momento de Trabajo basura (Office Space) en el que su jefe le pide informes TPS (sí, ¡son reales!) y dice algo. como "Ummmm, voy a necesitar que sigas adelante y empieces a aprender a codificar, mmmk... eso sería genial".

Desventajas de Python

Si busca inconvenientes de Python en Internet, puede encontrar cosas como que Python consume memoria y depende de la confianza en la comunidad de código abierto. Voy a suponer que no tiene un Commodore 64 y que la comunidad de código abierto está formada por un grupo de contribuyentes bien intencionados, no Pinky and the Brain.

Estos son los que creo que son los dos desafíos críticos al usar Python:

APRENDER PYTHON REQUIERE ENTRENAMIENTO Y PRÁCTICA
Dependiendo de a quién le pregunte, aprender Python puede llevar entre 3 y 6 meses, lo que no le hace competente en su uso para preparar y analizar datos. Compare eso con aprender Minitab Statistical Software, que requiere unos días de capacitación (si aún no lo domina). Incluso después de estar capacitado, codificar sin errores es casi imposible para cualquiera, y mucho menos para un principiante. Los errores no sólo requerirán depuración y aumentarán el tiempo que lleva realizar el análisis, sino que, lo que es peor, un error accidental podría darle una "respuesta incorrecta", frustrando el propósito de su análisis.

PYTHON ES UNA PÉRDIDA DE TIEMPO
Si su codificación es propensa a errores, naturalmente, los análisis simples llevarán mucho tiempo. Sin embargo, incluso si se convierte en un programador sólido, el código necesario para discutir, preparar y analizar datos es mucho más largo que el software de apuntar y hacer clic. E incluso si utiliza un modelo de lenguaje grande para acelerar la codificación, hay muchos detalles que requieren tiempo y revisión, como completar los valores faltantes que la codificación no puede leer. Si el dicho “el tiempo es oro” es uno de los favoritos de su jefe, este podría ser el momento de recordarle que lea Advise to a Young Tradesman (famoso por la lección de Franklin: “Recuerde que el tiempo es oro”).

Claro… ¡Pero Python es gratis! Pero no si se consideran los “costos”.

Técnicamente, Python es gratuito, pero tiene dos costes importantes: capacitación y coste de oportunidad. Claro, podría aprender Python por su cuenta, pero la realidad es que la mayoría de las personas que aprenden a programar (si no lo han hecho en la escuela) buscarán cursos de capacitación o campos de entrenamiento, que cuestan dinero. El coste mucho mayor es su tiempo. ¿No sería mejor aprovechar su tiempo aprendiendo, mejorando y avanzando en sus habilidades analíticas para tomar mejores decisiones, en lugar de aprender a codificar? ¿El tiempo dedicado a acceder y preparar sus datos es un mejor uso que realizar tareas, planificar o trabajar en proyectos que requiere su trabajo?

ACTIVIDADES CON VALOR AÑADIDO VERSUS ACTIVIDADES SIN VALOR AÑADIDO
Según Six Sigma Daily, Lean proporciona pautas sencillas de que para que algo añada valor, deben suceder tres cosas:

  1. El paso debe cambiar la forma o función del producto o servicio.
  2. El cliente debe estar dispuesto a pagar por el cambio.
  3. El paso debe realizarse correctamente la primera vez.

Si aprender a programar simplemente le ayuda a completar la misma tarea, en un período de tiempo más largo, sin valor para el cliente, y conlleva más riesgo al realizar el análisis correctamente (debido a la necesidad de capacitación), ¿no es simple el argumento más importante en contra de la adopción de Python? Es una actividad sin valor. ¿Y no es el objetivo de la mejora continua eliminar esas actividades? ¡Digo yo!.

Cómo Minitab facilita la colaboración con Python

Como responsable del presupuesto, aprecio escuchar que algo es “gratis” e informar rápidamente a mi equipo para que lo investigue como una alternativa a otra cosa que están haciendo. Sin embargo, también aprendí que lo “gratis” rara vez viene sin algunos inconvenientes, como estoy seguro que tu jefe también los tiene. Destacar algunas de las complejidades asociadas con Python podría ayudarle a conservar su software y, a su vez, aumentar su productividad, lo que beneficia a todos los involucrados.

Además, si el objetivo de su gerente es facilitar una mayor colaboración entre los científicos de datos que viven en Python y otras personas, podría ser bueno saber que Python se puede instalar en Minitab Statistical Software. Alternativamente, si hay un algoritmo o elemento visual muy específico en Python, es muy fácil incorporarlo a Minitab. Para obtener más información sobre cómo utilizar el nuevo módulo de integración de Minitab/Python, vea nuestro seminario web gratuito:

Las soluciones de Minitab pueden ofrecer la facilidad, eficiencia y repetibilidad de la resolución de problemas, al tiempo que permiten la colaboración y el acceso a la biblioteca de Python.

La integración de Python ofrece la flexibilidad del código Python personalizado dentro de la interfaz fácil de usar de Minitab, y los resultados se pueden guardar, almacenar y compartir en Minitab Project Files.

El agua dulce es uno de los recursos esenciales de nuestro planeta que la humanidad necesita gestionar y mantener cuidadosamente. El acceso a agua sana y no contaminada es un derecho humano fundamental. Desafortunadamente, existen muchos problemas de calidad del agua y el progreso tecnológico a menudo crea otros nuevos.

Captura de pantalla 2024 05 16 090710Por ejemplo, la floreciente industria farmacéutica genera cada vez más medicamentos para la salud humana y veterinaria que eventualmente terminan en corrientes de agua dulce. La concentración de antibióticos de amplio espectro, hormonas, antiinflamatorios no esteroides (AINE), beta-bloqueantes y reguladores de lípidos en sangre alcanza niveles peligrosos y sigue aumentando. La misma preocupación se aplica a los productos de cuidado personal: bactericidas/desinfectantes, repelentes de insectos, jabones, detergentes, fragancias y protectores solares.

La mayoría de estos contaminantes no suponen un riesgo inmediato para la salud, pero su acumulación en el cuerpo humano puede tener consecuencias a largo plazo aún desconocidas. La Agencia de Protección Ambiental de Estados Unidos (USEPA) y la Unión Europea (UE) identificaron varias sustancias químicas presentes en las aguas residuales y las colocaron en la lista de contaminantes prioritarios. Los futuros contaminantes emergentes en la lista incluyen sustancias tan omnipresentes como el ibuprofeno o el triclosán.

Otra clase de contaminantes novedosos está relacionada con la creciente demanda de productos electrónicos y vehículos eléctricos, de ahí la proliferación de baterías de iones de litio. Como parte del proceso de reciclaje, estarán disponibles grandes cantidades de cátodos, ánodos y electrolitos gastados; Se espera que el peso total estimado de las baterías gastadas sea de alrededor de un millón de toneladas en 2025. Desafortunadamente, la mayoría de los esfuerzos de recuperación están dirigidos a extraer y reutilizar metales valiosos (Co, Ni, Mn). Por otro lado, los cátodos de fosfato ferroso de litio, LFP, son de menor interés y en su mayoría terminan en aguas subterráneas a través de la ruta de los vertederos.

La descontaminación del agua de estos contaminantes es un proceso complejo y diversas tecnologías en plantas de tratamiento de aguas residuales tienen diferentes tasas de éxito para otros contaminantes. La búsqueda de mejores adsorbentes, preferiblemente aquellos que capturen y descompongan las moléculas dañinas, está en curso y representa un serio desafío social para la ciencia de materiales. Un examen de la lista de artículos científicos de BIOVIA muestra que muchos usuarios del software BIOVIA están contribuyendo activamente al desarrollo de nuevos materiales y tecnologías para la descontaminación del agua.

A continuación, se muestran algunos ejemplos recientes de estudios combinados experimentales y teóricos (V+R) que utilizaron BIOVIA Materials Studio para comprender las interacciones entre contaminantes y adsorbentes a nivel molecular.

CASOS DE ESTUDIO


Una colaboración internacional de científicos de la Technische Universität Berlin, la Universidad Maria Curie-Skłodowska en Lublin, la Universidad Tohoku en Japón y la Universidad Nacional de Uzbekistán sugirieron una mezcla de partículas de ZnS y SnO2 como fotocatalizadores para la adsorción y degradación de muchos compuestos farmacéuticos nocivos. La simulación molecular de la degradación fotocatalítica requiere los módulos Materials Studio Adsorción Locator y Forcite. Las afinidades de adsorción calculadas con estas herramientas se correlacionan muy bien con las actividades fotocatalíticas observadas experimentalmente, por lo que este flujo de trabajo se puede utilizar para seleccionar y optimizar nuevos catalizadores (Journal of Alloys and Compounds 827 (2020) 154339, doi: 10.1016/j.jallcom.2020.154339)

Un equipo de Tokio, Qingdao en China y Sheffield han sido pioneros en otra técnica para la eliminación de contaminantes farmacéuticos, así como de colorantes orgánicos y fenoles. Utilizan una heterounión 2D/2D BiOBr/MoS2 en forma de escamas estrechamente unidas para fotoactivar el peroximonosulfato (PMS), un material eficiente para la oxidación y eliminación de contaminantes orgánicos. El solucionador CASTEP del paquete Materials Studio ayudó a explicar las propiedades electrónicas y catalíticas de la heterounión. Este trabajo ahora se está convirtiendo en un proyecto piloto a gran escala para el tratamiento real de aguas residuales (Journal of Colloid and Interface Science 594 (2021) 635-649; doi: 10.1016/j.jcis.2021.03.066)

¿Quieres que Biovia Materials Studio te ayude en tus investigaciones dentro del ámbito de materiales?
Consulta con nosotros qué módulos te serían de ayuda.

En la búsqueda de nuevos materiales semiconductores, nuevos diseños de dispositivos tales como sensores, fotodiodos y células solares necesitamos un paquete de simulación avanzado. Aquí es donde entra en juego el Semiconductor Module de COMSOL Multiphysics, que nos permite explorar y comprender mejor el comportamiento de dispositivos semiconductores [1].

Uno de los conceptos clave en esta exploración es el "Generation Rate" (tasa de generación, G), una variable fundamental en la construcción de la curva característica voltaje-corriente (JV) y en el cálculo del Incident Photo-Electron Conversion Efficiency (IPCE). Pero ¿cómo se define y utiliza esta variable en el entorno de COMSOL?

La tasa de generación representa la cantidad de pares electrón-hueco creados por unidad de volumen y tiempo dentro de un material semiconductor. En COMSOL Multiphysics, esta variable se define y calcula mediante modelos físicos que tienen en cuenta la interacción de la luz con los materiales semiconductores del dispositivo.

Para construir la curva voltaje-corriente es crucial entender cómo varía la tasa de generación a lo largo de un dispositivo para diferentes condiciones de operación y geometrías. COMSOL nos permite explorar esta variación al simular el comportamiento del material en respuesta a diferentes longitudes de onda, intensidades de luz y perfiles de dopaje, entre otros factores. Si se ilumina con luz blanca, esto implica que la fuente lumínica contiene todas las longitudes de onda, de acuerdo con la Ec. 1, donde h y c son respectivamente la constante de Planck y la velocidad de la luz en el vacío. Por otra parte, κ es el coeficiente de extinción espectral, E es la irradiancia espectral, λ es la longitud de onda y z es una coordenada espacial. Ver ejemplo [2].

Por otro lado, el IPCE proporciona una medida de la capacidad del dispositivo semiconductor, tal como un fotodiodo o una célula solar, para convertir fotones incidentes en corriente eléctrica. La tasa de generación desempeña un papel crucial en el cálculo de la IPCE, ya que está directamente relacionada con la cantidad de fotones absorbidos y la corriente generada como resultado. Ver Ec. 2, donde Pin es la potencia de la radiación monocromática incidente (es decir, para una longitud de onda en particular). Los demás parámetros y variables son los mismos que para Ec. 1. Ver ejemplo [3], en donde se obtiene IPCE. La generación aparece por la absorción de la onda electromagnética incidente.

Al analizar la Ec. 1 y Ec. 2, se puede ver que para el primer caso se integra sobre todo el espectro electromagnético y G1 depende de la coordenada espacial z. Por el contrario, para el segundo caso, la tasa de generación G2 queda dependiente de λ y de z. ¿Cómo se gestiona G1 y G2 en COMSOL? Esto se ilustra en las siguientes figuras.

La Figura 1 contiene una lista de parámetros necesarios, los cuales son P_in, un valor fijo de la iluminación monocromática, lambda y incidentPhotonFluxPerArea. Se asume un valor arbitrario para lambda en primera instancia para luego realizar un barrido auxiliar (auxiliary sweep) sobre la longitud de onda. Dichos parámetros serán utilizados en el estudio de IPCE.


Figura 1. Parámetros necesarios para IPCE.

La Figura 2 muestra cómo se han introducido las variables G1 y G2 para la tasa de generación: Caso 1, luz blanca (fuente policromática). Caso 2, luz monocromática.


Figura 2. Definición de variables G1 y G2, tasa de generación. En el caso de G1, se utiliza lm para definir la longitud de onda como variable de integración. En el caso de G2, se usa lambda que fue definido en Parameters para luego implementar el barrido auxiliar. Notar que el coeficiente de extinción espectral κ se ha introducido en COMSOL a través de una Interpolation Function, para el cual se conoce de manera experimental.

La Figura 3 muestra dónde se utilizan G1 y G2. Respectivamente en el nodo de User Defined Generation, los dos últimos nodos de la Física de Semiconductor (semi).


Figura 3: Nodo donde se utiliza G1 dentro del Model Builder. Para el caso de la luz monocromática se realiza de manera análoga en el nodo User Defined Generation: Monochromatic light (último nodo de la figura). En dicho caso se introduce G2.

La Figura 4 muestra cómo configurar el estudio para obtener la curva JV, en donde se hace un barrido auxiliar (auxiliary sweep) sobre el voltaje V0 (definido en parameters aunque no visible). Esto permite trazar la curva voltaje-corriente bajo iluminación policromática en un estudio estacionario.


Figura 4: Configuración del estudio para la curva JV. Se ha elegido el rango 0 a 1 V en pasos de 0.1V.

La Figura 5 muestra cómo configurar el estudio para obtener la curva IPCE, en donde se hace un Auxiliary Sweep sobre la longitud de onda lambda. Esto permite trazar la curva de IPCE bajo iluminación monocromática en un estudio estacionario, diferente al utilizado para la curva voltaje-corriente.


Figura 5: Configuración del estudio para la curva IPCE. Se ha utilizado el rango 300 a 1200 nm en pasos de 20 nm. No obstante, el usuario puede utilizar un paso más fino para mayor resolución (por ejemplo 10 nm).

Los resultados finales se pueden ver en las figuras 6 y 7.


Figura 6. Curva JV donde se puede observar la expresión utilizada en campo de configuración Global. Esto es semi.I0_1 la cual es la corriente en uno de los terminales. La variable para el eje horizontal es el parámetro V0 sobre el cual se ha hecho el barrido auxiliar en el estudio estacionario.


Figura 7. Curva IPCE donde se puede observar la expresión utilizada en campo de configuración Global. Esto es IPCE=I/(q PhotonFlux Area). La variable para el eje horizontal es el parámetro lambda sobre el cual se ha hecho el barrido auxiliar en el estudio estacionario correspondiente.

En resumen, la definición y comprensión de la tasa de generación en COMSOL Multiphysics nos permite profundizar en el funcionamiento interno de dispositivos semiconductores. Caso de sensores, fotodiodos y células solares. Al emplear esta herramienta avanzada, los investigadores y diseñadores pueden explorar una amplia gama de escenarios y parámetros para el diseño de dispositivos óptimos.

Referencias

[1] COMSOL Semiconductor Module
[2] Galería de aplicaciones de COMSOL: Si Solar Cell 1D
[3] Galería de aplicaciones de COMSOL: GaAs PIN Photodiode

Las nuevas herramientas de procesado de señal de Maple 2024 permiten combinar, y analizar señales de más maneras y más eficientemente.

  • El nuevo comando ResponseSpectrum se utiliza para graficar la respuesta de una estructura o sistema a frecuencias variables de movimiento del suelo o excitación de entrada.
  • El comando IntegrateData se ha actualizado para incluir opciones para especificar el área inicial y devolver totales acumulados.
  • Los comandos IntegrateData y IntegrateData2D ahora aceptan unidades en los contenedores de datos y tamaños de paso.
  • Los cálculos pesados utilizados por el comando FindPeakPoints se ejecutan significativamente más rápidos.
Personalización de la pantalla principal

Todas las aplicaciones comerciales de Lakes Software presentan una apariencia similar. Esta familiaridad permite a los usuarios ejecutar fácilmente una variedad de modelos de dispersión de aire incluso cuando acceden a un producto nuevo por primera vez. La imagen de la cabecera muestra y utiliza AERMOD View para demostrar los componentes clave de cada aplicación de Lakes Software.

Estos componentes incluyen:

  1. Barra de menú principal que enumera todos los comandos disponibles
  2. Botones de la barra de herramientas para una selección rápida de los comandos del menú principal
  3. Vista de árbol con pestañas para acceder a diferentes opciones de visualización, como superposiciones y gráficos de salida del modelo.
  4. Barra de herramientas de la aplicación para la definición gráfica de objetos del modelo.
  5. Barra de herramientas de anotación para gestionar el contenido del área de dibujo.
  6. Etiquetas de eje que muestran las coordenadas reales del área de modelado.
  7. Área de dibujo donde se muestran gráficamente todos los datos de entrada del modelo
  8. Barra de colores que muestra los niveles de contorno de los trazados de salida del modelo seleccionado
  9. Panel de coordenadas que muestra la ubicación precisa del cursor del mouse en el sistema de coordenadas del proyecto
  10. Barra de herramientas de salida gráfica que proporciona fácil acceso a opciones de salida gráfica y datos de salida del modelo.
  11. Cada aplicación tiene varias opciones de personalización que permiten a los usuarios crear una pantalla que se adapte a sus necesidades individuales. A continuación se muestra una lista de funciones útiles y opciones disponibles para ayudar en esta personalización.

    • El menú View proporciona acceso directo para seleccionar qué barras de herramientas y paneles están visibles.

    • El tamaño de los botones de la barra de herramientas se puede personalizar mediante File | Preferences | General settings.

    • En la misma opción General settings, los usuarios puede escoger Group Toolbar Buttons para agrupar los botones de la barra de herramientas reduciendo el tamaño de la barra.

    • Cada barra de herramientas (Application, Annotation y Graphical Output) se puede mover fácilmente haciendo clic y arrastrando la barra de herramientas a otra ubicación. También se pueden mover para que sean un cuadro de diálogo de barra de herramientas flotante en lugar de fijarse a la pantalla principal.

    • La barra de colores Color Ramp pued moverse haciendo clic derecho en el panel y seleccioinando la ubicación de visualización en el menú contextual.

       

¿Es capaz de predecir con confianza cómo se comportarán sus productos, procesos o clientes?

Únase a nosotros en la semana de la Analítica Predictiva de Minitab (Minitab's Predictive Analytics Week), una serie de seminarios web diseñados para impulsar sus habilidades de datos a nuevas alturas

El científico de datos, asesor sénior de Minitab, Mikhail Golovnya, se centrará en el modelado predictivo, la inteligencia artificial y la implementación de modelos, explorando sus aplicaciones en varios sectores, incluidos los casos de uso bancario y humanitario modernos.

Esto es lo que le deparará cada día a las 17h:

  • Martes 21 de mayo: Exploring Reliable, Rule-Based AI and Automated Machine Learning
  • Miércoles 22 de mayo: Mastering Model Optimization with Artificial Intelligence (AI)
  • Jueves 23 de mayo: Model Deployment: Monitoring, Diagnostics, and Predictive Concepts