Escrito por el

Alfredo Deaño del de la presentará durante la celebración del bajo el título en la sección un conjunto de rutinas de Maple para el cálculo de los ceros reales de funciones hipergeométricas clásicas, desarrolladas conjuntamente con y , ambos del de la .

Los algoritmos implementados están basados en un método de punto fijo construido para relaciones de funciones especiales y aprovecha propiedades generales de ecuaciones diferenciales hipergeométricas y ecuaciones diferenciales en diferencias (DDE) de primer orden que relaciona dos funciones de la misma familia con sus derivadas.

El problema del cálculo de ceros reales de surge en diferentes contextos, desde aplicaciones físicas a problemas de análisis numérico, como el caso de cálculo de las reglas de cuadratura gaussianas. Diversos algoritmos como métodos matriciales, iteraciones de tipo Newton y aproximaciones asintóticas son propuestas existentes para este problema, pero parece no existir un algoritmo general adecuado para diferentes familias de funciones hipergeométricas. El método de punto fijo propuesto en este trabajo es aplicable a un amplio espectro de funciones especiales clásicas dado que los ingredientes básicos son comunes a muchas de ellas. Los casos considerados incluyen , y , , , y .

Detalles de la conferencia:
  • FECHA: Lunes, 28 de Agosto.
  • HORARIO: de 15:30 a 15:55.
  • SALA: R401.
  • CONFERENCIANTE: Alfredo Deaño Cabrera (Universidad Carlos III de Madrid).
  • TÍTULO: A Maple Package for the computation of real zeros of hypergeometric functions.
  • CHAIR: Rafael Bravo de la Parra.
¡Atención! Este sitio usa cookies y tecnologías similares. Si no cambia la configuración de su navegador, usted acepta su uso.