
MUSIC Method for Spectral Estimation

Introduction
The MUtiple SIgnal Classifier (MUSIC) method is an approach for spectral estimation that offers
higher frequency resolution than Fourier based approaches. This technique is particularly
appropriate for signals that consists of multiple sinusoids polluted with white (i.e. Gaussian) noise.

This application generates a noisy sinusoidal data set, and then applies the MUSIC method to
identify the frequencies used to generate the signal.

Consider a signal x(n) that is the sum of r sinusoids, with N samples. If the signal is polluted with
white noise w(n), then

where Ai and is the amplitude and frequency of the ith sinusoid, i = 1 ... r and n = 1 ... N

The autocorrelation matrix of the signal has N eigenvalues and N eigenvectors.

the r largest eigenvalues represent eigenvectors associated with the subspace of the signal
plus noise
the remaining eigenvectorsr are only assoicated with the noise subspace

Theoretically, the projection of the eigenvectors of the noise subspace onto the signal frequencies
is 0 (since these eigenvectors are orthogonal to the signal). Hence this function is theoretically
infinite at a signal frequency .

 where and qi are the smallest N - r eigenvalues.

P() is known as a "pseudospectrum". The peaks in this function only identify the location of

> >

> >

> >

> >

frequencies, and are not a true spectrum.

The value of r (i.e. the size of the signal subspace) is a choice of the analyst.

a large r gives a detailed pseudospectrum that might contain spurious spectral peaks
a small r gives a smooth pseudospectrum that might miss weak spectral peaks

Since can be evaluated at any , the MUSIC method offers a form of superesolution - that is,
frequencies smaller than one sample.

restart:
with(SignalProcessing):
with(Statistics):
with(LinearAlgebra):

Generate a Noisy Signal
Frequencies, amplitudes and number of samples. Note that two of the sinusoids have very similar
frequencies
omega1 := 1.0:
omega2 := 1.05:
omega3 := 2.2:

A1 := 1.5:
A2 := 2.5:
A3 := 2.5:

N := 64:

clean_signal := Vector(N, i -> A1 * cos(omega1 * i) + A2 * cos
(omega2 * i) + A3 * cos(omega3 * i), datatype = float[8]):

Add Gaussian noise to the signal
Nmean := 0.0:
Nstd := 0.25:

dirty_signal := clean_signal +~ Sample(Distribution(Normal
(Nmean, Nstd)), N):

dataplot([clean_signal, dirty_signal], legend = ["Clean
Signal", "Dirty Signal"],style = line, gridlines)

> >

Autocorrelation of the Noisy Signal
Calculate the autocorrelation of the mean zeroed data
corr_matrix := AutoCorrelation(dirty_signal -~ Mean
(dirty_signal)):
dataplot(corr_matrix, style = line, gridlines)

(4.1)(4.1)

> >

Eigenvalues and Eigenvalues of the Correlation Matrix
The autocorrelation vector is the first row of a circulant matrix (a specialized kind of Toeplitz
matrix)
toep_mat := Matrix(N, N, (i, j) -> corr_matrix[abs(i - j) + 1],
datatype = float[8])

(4.1)(4.1)

> >
Eigenvalues and eigenvectors of the autocorrelation matrix
eig_vals, eig_vecs := Eigenvectors(toep_mat):

dataplot(eig_vals, gridlines);

> >

(4.1)(4.1)

> >

> >

Note that the largest eigenvalues indicate the presence of sinusoids in the signal, while the smallest
eigenvalues are associated with the noise.

Music Estimator and Pseudospectrum
The r largest eigenvalues represent those eigenvectors associated with the signal (the other
eigenvectors are associated with noise)
r := 6:

a_omega := Vector([seq(exp((i - 1.0) * I * omega), i = 1 .. N)])
:

p := proc(freq)
 local i, A_omega:
 A_omega := eval(a_omega, omega = freq):
 1 / add(abs(A_omega . eig_vecs[.., i]) ^ 2, i = r + 1 .. N);
end proc:

Evaluate the music estimator at a range of angles, and plot the results.
max_search_angle := 3.0:
num_points := 150:

> >

(4.1)(4.1)

> >

> >

thetas := [seq(max_search_angle / num_points * (i -
1), i = 1..num_points)]:
music_estimates := [seq(p(max_search_angle / num_points * (i -
1)), i = 1..num_points)]:

plot(thetas, 10*log10~(music_estimates/max(music_estimates)),
axes = boxed, title = "Frequency Estimation via the MUSIC
method", labels = ["Frequency","Pseudospectrum (dB)"],
labeldirections = [horizontal, vertical], font = [Arial],
titlefont = [Arial, 16], labelfont = [Arial, 11], size = [600,
400], gridlines)

The three peaks correctly identify the location of the frequencies.

Now compare with a periodogram generated with a Fourier approach. The two similar frequencies
cannot be discriminated.
Periodogram(dirty_signal, samplerate = 2 * Pi, size = [600,
400])

(4.1)(4.1)

> >

