Water Hammer

When a valve at the end of a pipeline suddenly closes, a

pressure surge hits the valve and travels along the Valve open - water flows

pipeline. This is known as water hammer. This process is

modeled by two partial differential equations (PDEs). The —
PDEs can be discretized along the spatial dimension to Valve fpidly closos  WATER HAMNER B 5P,
give a set of ordinary differential equations, ODEs. For a l‘uwﬂﬂ”ﬂ‘!
given set of parameters, this application solves the

resulting ODEs numerically and plots the pressure
dynamics at the valve.

Y Model

Water hammering can be described by the following PDEs:

=0

0 1 0 friction(|V (x, £)|) V(x, t) |V(x, t)]
JR— - P b b b
o Vix,t) + 0 a (x,¢t) + > Dia

Oy + L2 pin=o
ax (xa) Ksat (xa)_

where V(x, t) and P(x, t) are the velocity and pressure at position x and time ¢, friction (
[V (x, t)| ) is the friction factor at a given velocity, p is the liquid density, Dia is the pipe
diameter, and Ks is the effective bulk modulus of the system.

Discretizing the PDEs by replacing the spatial derivatives with a central difference
approximation gives these equations:
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where i=1.N.

This application solves the discretized ODEs numerically.

> vrestart



Y Physical Parameters

Parameters
Liquid density > p:=1000:
Bulk modulus | > K :=20010°:
Viscosity > w:=0.001:
Pipe diameter > Dia = 0.1:

Wall thickness

> thick := 0.001 :

Roughness > e = 0.0001:
Length > L:=25
Young's > E:=7010":
modulus
Cross-sectional |> 4 :=
area

1 evalf (m)

4

Dia
Pressure at > Psource =
start of pipeline 0.510°:
Effective . 1
modulus of > Ks:=1 (K
system + Dia|

(E thick) ) :

Y Friction Factor

> friction :==proc(V)
local Rey, fL, fT :
option Afloat :
if type(V, numeric) then




Dia-V-p

Rey :=
w
64
JL= Rey -~
1
ST = x

o . 1.11
(1.810g10[ Rey + ( 3.7 Dia ) )j

if Rey > 0 and Rey < 2000 then
return fL :
elif Rey > 2000 and Rey < 4000 then

(ST —/L)-(Rey —2000)
4000 — 2000

return fL +

elif Rey > 4000 then
return [T
else
return 0
end if;
else
return 'friction' (V)
end if
end proc:

Y Steady State Flow Rate

2
%
> Vsteady := fsolve(Psource =friction(V) —— P )
Dia 2

Vsteady == 14.19058741

> Qsteady := Vsteady A
Osteady == 0.1114526129

V¥ Discretize the PDEs into ODEs
Number of nodes:
> N:=30:

Length of each node:

L
> dx = —
TN

Calculate the steady state pipeline velocity from the Darcy-Weisbach equation:

4.1)

4.2)



Spatially discretized form of each PDE:

> eql = diff ('cat'(V, i) (1), 1) _i_i ‘cat'(P,i+1)(t) —'cat'(P,i—1) (1)

p 2dx
friction(|'cat' (V, i) (¢)|) 'cat'(V, i) (¢) |'cat' (Vi) (t)| _ .
+ : =0:
2 Dia

‘cat'(V,i+1)(t) ='cat'(V,i—1) (1)
2 dx

> eq2 = —l—KLsdiff('cat'(P,i)(t),t)ZO:

Generate the entire set of ODEs:

> eqs:=seq(leql,eq2] ,,i=1.N):
[]

Y Initial and Boundary Conditions

During the initial two seconds, the velocity at the valve is at a steady state. After that,
the velocity decreases exponentially to zero as the valve closes.

Vsteady t<2

> cat(V,N+1)(z) = 1—2)

Vsteady e 70l otherwise

Pressure at the start and end of the pipeline:

> cat(P,0)(t) == Psource:
cat(tP,N+1)(t) :=0:

Initial pressure and velocity distribution along the pipeline:

cat(P, 1) (0) = Psource — % Psource

> ic:=seq( ,i=1..N),

[]
seq( [cat(V,i)(0) = Vsteady][], i=1 ..N) :

The velocity at node 0 is equal to the velocity at node 1 (because there are no
derivatives involving node 0):

> cat(V,0)(t) = VI(t) :

Y Solve the ODEs and Plot Pressure at Valve

> res := dsolve( [ egs, ic], numeric, output = listprocedure, known = friction, 'range' =0..3) :
> P||N := subs(res, P||N (1)) :

Plot pressure dynamics at the valve:

> plot(P||N(t),t=0.3)
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