Maplesoft

""""-v-..__‘___ Mathamatics = Modaling = Simulation www.maplesaft.co
-

L=

Fundamental Frequency and Harmonics of
a Violin Note

V Introduction

This application finds the fundamental frequency and harmonics of a violin using information from
the amplitude spectrum. Then, we generate a sinusoidal signal with the same frequency-amplitude
characteristics of the violin note, and play the resulting sound.

This speaker component is needed to play audio: "]'}

V Import and Play the Audio

> restart:
with (SignalProcessing):
with (AudioTools) :
with (ColorTools) :
with (plots):

Import and play the violin note.

> violinNote := Read(FileTools:-JoinPath ([kernelopts (datadir),
"audio", "ViolinThreePosVibrato.wav"]))[.. , 11;
Play(violinNote) ;

"Sample Rate" 44100 |
"Bit Depth" 16

violinNote = "Channels" 1 2.1)

"Points/Channel" 64724

"Duration” 1.47s
Sample rate and number of data points
> Fs := attributes(violinNote) [1];
N := numelems (violinNote) ;
Fs := 44100

N := 64724 (2.2)

¥V Amplitude Spectrum of the Violin Note

> sig_fft = FFT(violinNote) / evalf (sqrt(N)):
amplitudes = Vector[column] (2 * abs(sig_fft)):
frequencies := Vector(N, i -> evalf(Fs * i / N), datatype =
float[8]):

Warning, size of Array must be a power of two greater than two,

using DFT instead and suppressing this warning for the
remainder of this session

> pl := plot(frequencies, amplitudes
,View = [0..20000, 0..0.008]
,Style = line, symbol = solidcircle, color = Color ("RGB",
[0, 79/255, 121/255]), thickness = 0
,axes = boxed
,Size = [800, 300]
,labels = ["Frequency (Hz)", "Amplitude"], labelfont =
[Calibri], labeldirections = [horizontal, vertical]
,axesfont = [Calibri]
ytitle = "Amplitude Spectrum of Violin Note", titlefont =
[Calibri, 16]
,background = Color ("RGB", [218/255, 223/255, 225/255])
,axis = [gridlines = [color = Color("RGB", [1, 1, 1]1)11]1):
display(pl, axis[2] = [mode = log]);

Amplitude Spectrum of Violin Note

Amplitude

10000 15000 20000

Frequency (Hz)

0 5000

V Find the Local Peaks in the Amplitude Spectrum

Hence the peaks in the amplitude spectrum are as follows (the first column column contains the

frequencies, and the second column contains the amplitude).

> peakPoints := FindPeakPoints (<<frequencies | amplitudes>>,
minimumheight = 0.0001, minimumbreadth = 75, includeendpoints =
false) ;

[981.150732300000 0.00688051457788536 |
2001.13868100000 0.00426776422024256
3000.68599000000 0.00248112917068676
3967.52827400000 0.00290492946148817
4933.00784900000 0.00119075323784304
5932.55515700000 0.000435123849101347
6919.83808200000 0.000641373293516093
7880.54817400000 0.000943193510053491
8907.34966900000 0.000483241692614761
9894.63259400000 0.000263417282367417

peakPoints := 4.1

26 X 2 Matrix

Now overlay the peak points over the spectrum

> p2 := plot(peakPoints, style = point, color = black, symbol =
solidcircle, view = [0 .. 20000, O .. 0.008], size = [800, 300])

display(pl, p2, axis[2] = [mode = log]);

Amplitude Spectrum of Violin Note

Amplitude

15000 20000

=
o

5000 10000
Frequency (Hz)

V Sonify a Signal the Same Peak Frequencies and Amplitude of the

Violin Note
Now generate a sum of sinusoids from the frequency-amplitude data, and sonify the resulting

signal.
>t
aud fh :
Pi * peakPoints[j, 1] * t[i]),]

), samplerate = 44100))
] is dmplicitly declared local to procedure

= Vector(N, i -> (i - 1)/Fs, datatype = float[8]):
= (Create(Vector (N, i -> add(peakPoints[]j,2] * sin(2 *
=1 .. 13), datatype = float[8]

Warning, ~3j°
"Sample Rate" 44100 |
"Bit Depth" 16
aud_fh = "Channels" 1 (5.1

"Points/Channel" 64724

"Duration" 1.47s

> Play(Normalize (aud_fh))

