
> >

> >

(2.1)(2.1)

Locate a Signal in Audio in the Presence of
Noise

Introduction
This application demonstrates how you can estimate the location of a signal that might exist in a
larger signal.

First, an audio file is first loaded, a small segment is extracted, and random Gaussian
noise is added to both
The cross-correlation of the full audio and the extract is computed, and the maximum lag
computed

The maximum lag is the index at which the extract is predicted to be found in the audio.

restart:

with(SignalProcessing):
with(ColorTools):
with(plots):
with(AudioTools):

common_plot_opts :=
 axes = boxed
,axesfont = [Calibri]
,size = [800, 400]
,legendstyle = [font = [Calibri]]
,labeldirections = [horizontal, vertical]
,labelfont = [Calibri]
,background = Color("RGB", [218/255, 223/255, 225/255])
,axis = [gridlines = [5, color = Color("RGB", [1, 1,
1])]]:

Generate the Full Measurement
fullAud := AudioTools:-Read(FileTools:-JoinPath(
[kernelopts(datadir), "audio", "maplesim.wav"]));
N := numelems(fullAud);
samplingRate := attributes(fullAud)[1];

> >

(2.1)(2.1)

> >

(2.2)(2.2)

Add noise to the audio
fullAudNoise :=fullAud + GenerateGaussian(N, 0, 0.05);

times := Vector(N, i -> (i - 1)/samplingRate, datatype = float
[8]):

p1 := plot(times, fullAudNoise
,thickness = 0
,color = Color("RGB",[30/255, 130/255, 76/255])
,legend = "Full Audio"
,labels = ["Time (s)", "Amplitude"]
,common_plot_opts)

> >

> >

(2.1)(2.1)

Extract Part of the Full Measurement
Now extract delta elements starting at position i_start, and add noise

delta := 1250:
i_start := 3700:
i_end := i_start + 1250:

extract := Vector(fullAud[i_start .. i_end - 1]) +~
GenerateGaussian(i_end - i_start, 0, 0.05):
t_extract := Vector(i_end - i_start, i -> (i + i_start - 1)
/samplingRate, datatype = float[8]):

p2 := plot(t_extract, extract
,thickness = 0
,color = Color("RGB",[150/255, 40/255, 27/255])
,legend = "Extract"
,labels = ["Time (s)", "Amplitude"]
,common_plot_opts):

display(p1, p2)

> >

(2.1)(2.1)

Find the Position of the Signal in the Measurement using Cross-
Correlation
Now calculate and plot the cross-correlation of the full audio and the extracted signal
cc := CrossCorrelation(extract, fullAudNoise, 1):

dataplot(cc
,style = line
,thickness = 0
,color = Color("RGB",[150/255, 40/255, 27/255])
,labels = ["lag", ""]
,common_plot_opts)

> >

(4.1)(4.1)

> >

(2.1)(2.1)

The highest cross-correlation is at this index. This is position that the extracted signal is predicted to
start at in the full audio
maxLag := max[index](cc);
i_end := maxLag + delta:

t_extract := Vector(i_end - maxLag, i -> (i + i_start - 1)
/samplingRate, datatype = float[8]):

p2 := plot(t_extract, extract
,thickness = 0
,color = Color("RGB",[150/255, 40/255, 27/255])
,legend = "Extract"
,labels = ["Time (s)", "Amplitude"]
,common_plot_opts):

display(p1, p2)

(2.1)(2.1)

