
> >

> >

(2.1)(2.1)

> >

Compressing Audio with the Discrete
Cosine Transform

Introduction
This application demonstrates how you can compress a signal by discarding low-energy parts of its
discrete cosine transform

This loudspeaker is needed to play the audio

restart:
with(SignalProcessing):
with(AudioTools):
with(ColorTools):

common_plot_opts :=
 axes = boxed
,axesfont = [Calibri]
,size = [800, 400]
,legendstyle = [font = [Calibri]]
,labeldirections = [horizontal, vertical]
,labelfont = [Calibri]
,titlefont = [Calibri, 16]
,background = Color("RGB", [218/255, 223/255, 225/255])
,axis = [gridlines = [5, color = Color("RGB", [1, 1,
1])]]:

Import and Play Audio
aud := Read(FileTools:-JoinPath([kernelopts(datadir), "audio",
"maplesim.wav"]));
Fs := attributes(aud)[1]

> >

(2.1)(2.1)
> >
> >

Play(aud)
p1 := dataplot(aud, style = line, thickness = 0, color = Color
("RGB",[30/255, 130/255, 76/255]), legend = "Original Audio",
labels = ["Index", "Amplitude"], common_plot_opts)

Calculate the Direct Cosine Transform
aud_dct := DCT(aud):
dataplot(aud_dct, style = line, thickness = 0, color = Color
("RGB",[0/255, 79/255, 121/255]), labels = ["Index", "Energy"],
title = "Discrete Cosine Transform of Audio", common_plot_opts)

> >

(2.1)(2.1)

(4.1)(4.1)

(4.2)(4.2)
> >

> >

Calculate the number of DCT coefficients needed to model 97%
of the energy
Sort the DCT coefficients into descending order (i.e. the most significant coefficients first).
ind := sort(abs(aud_dct), `>`, output = permutation):

Now calculate how many of the sorted coefficients needed to retain 97% of the energy
num_coeffs := 1:

do num_coeffs++ until Norm(aud_dct[ind[1..num_coeffs]], 2) /
Norm(aud_dct, 2) > 0.97:

num_coeffs
1074

13% of the DCT coefficients are needed to retain 97% of the signal energy
evalf(num_coeffs / numelems(aud_dct))

0.1305457639

Set the remaining coefficients to 0

> >

> >

> >

> >

(2.1)(2.1)

aud_dct[ind[num_coeffs + 1..]] := 0:

Reconstruct and Play the Compressed Audio and
aud_recon := InverseDCT(aud_dct):

p2 := dataplot(aud_recon, style = line, thickness = 0, color =
Color("RGB",[0/255, 79/255, 121/255]), legend = "Reconstructed
audio with 97% of energy"):
plots:-display(p1, p2, common_plot_opts)

Play(Create(aud_recon, rate = Fs))
The reconstructed audio is hissy, but is still legible

