___‘y
Maplesoft

'=-‘“--.,___‘__ Mathamatics = Modaling = Simulation www.maplesoft.com
m—

Compressing Audio with the Discrete
Cosine Transform

V Introduction

This application demonstrates how you can compress a signal by discarding low-energy parts of its
discrete cosine transform

This loudspeaker is needed to play the audio l‘ ]'}

> restart:
with (SignalProcessing):
with (AudioTools) :
with (ColorTools) :

> common plot opts :=

axes = boxed

,axesfont = [Calibri]

,Size = [800, 400]

,legendstyle = [font = [Calibri]]

,labeldirections = [horizontal, vertical]

,labelfont = [Calibri]

,titlefont = [Calibri, 16]

,background = Color ("RGB", [218/255, 223/255, 225/255])
,axis = [gridlines = [5, color = Color("RGB", [1, 1,

11)11:

V Import and Play Audio

> aud := Read(FileTools:-JoinPath ([kernelopts(datadir), "audio",
"maplesim.wav"])) ;
Fs := attributes(aud) [1]



"Sample Rate" 11025 ]
"Bit Depth" 16

aud = "Channels" 1

"Points/Channel" 8227

"Duration" 0.75s
Fs := 11025

@2.1)

> Play (aud)
style = line, thickness = 0, color = Color

> pl := dataplot(aud,
("RGB", [30/255, 130/255, 76/255]), legend = "Original Audio",
labels = ["Index", "Amplitude"], common plot opts)

0.5-

@

Amplitude

- 0.5

2000 4000 6000 8000

Index

—— Original Audio

V Calculate the Direct Cosine Transform

> aud_dct := DCT(aud):
dataplot(aud_dct, style = line, thickness = 0, color = Color
("RGB", [0/255, 79/255, 121/255]), labels = ["Index", "Energy"],
title = "Discrete Cosine Transform of Audio", common plot_opts)



Discrete Cosine Transform of Audio

2000 4000 6000 8000
Index

V Calculate the number of DCT coefficients needed to model 97%
of the energy

Sort the DCT coefficients into descending order (i.e. the most significant coefficients first).
> ind := sort(abs(aud dct), >, output = permutation):

Now calculate how many of the sorted coefficients needed to retain 97% of the energy
> num coeffs := 1:

do num coeffs++ until Norm(aud dct[ind[l..num coeffs]], 2) /
Norm(aud dct, 2) > 0.97:

num coeffs
1074 4.1)

13% of the DCT coefficients are needed to retain 97% of the signal energy
> evalf (num coeffs / numelems (aud dct))
0.1305457639 4.2)

Set the remaining coefficients to 0



> aud_dct[ind[num coeffs + 1..]] := 0:

V Reconstruct and Play the Compressed Audio and

> aud_recon := InverseDCT (aud_dct):

> p2 := dataplot(aud _recon, style = line, thickness = 0, color =
Color ("RGB", [0/255, 79/255, 121/255]), legend = "Reconstructed

audio with 97% of energy"):
plots:-display(pl, p2, common_plot opts)

0.5-
0]
ge)
3 0
=
€
<

-0.5-

2000 4000 6000 8000
Index
— Original Audio Reconstructed audio with 97% of energy

> Play(Create (aud_recon, rate = Fs))

The reconstructed audio is hissy, but is still legible



