
A frequently cited goal of both pharmaceutical and diagnostics 
development is to reduce the time required to develop an 
effective antibody therapeutic or assay.  Recent publications 
have shown that computational estimates of the effects of 
mutations in silico are capable of enriching mutations libraries 
toward those that improve binding or stability in the target 
environment.
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article “AB-Bind: Antibody binding mutational database for 
computational affinity predictions” by Sarah Sirin et al.  Protein 
Science 2016, 25, 393-409.  

INTRODUCTION
Antibodies now have a critical role in both therapeutics and 
diagnostics areas of medicine and research.  The market is 
expected to grow at a CAGR of 8% or more for several years 
and reach 90B USD by 2017 (Figure 1). There are many 
challenges to bringing a new active pharmaceutical ingredient 
to market.     Of these challenges the need to reduce total cost 
of development and decrease the time to market are critical.  
Combining in silico predictions with experiment is widely seen 
as presenting opportunities to achieve these objectives.

In this Case Study we report on an independent study2 that 
compares the relative ΔΔG (binding) prediction capability of 
BIOVIA Discovery Studio with experiment.    The antibody 
library used is particularly interesting because it includes a high 
percentage of non-alanine mutations, and a high percentage 
of multiple simultaneous mutations.  The dataset focuses 
on antibody-antigen interactions, but interactions with Fc 
domains and nanobodies are also included.

Highlights:

• Antibody database composition
• 32 complexes including mostly high resolution x-ray 

crystal structures (27) but also including several 
proteins constructed with homology modeling (5).  
Experimental determination of binding employed one or 
several of the following methods.

• The ΔΔG predictions were obtained with unmodified 
academic and commercial software as noted.

• Results were compared with experimentally determined 
changes in binding energy obtained from multiple methods. 

METHOD 
1.Composition  of the antibody database (AB_DATABASE)

• Antibody complexes consisted of antibodies interacting 
with protein antigens.  The majority of the structures 
were from high resolution x-ray structures.  All variants 
(mutations) present were represented by one, but 
frequently multiple experimental antibody-antigen 
binding energies.

 � i) Basis set includes 32 complexes each with from 7 
to 246 variants for a total of 1,001 variants (Fab, Fc, 
antibody-like and nanobodies)

 � ii) Categorized by interaction type (polar, non-polar, 
aromatic, non-aromatic, charged, neutral)

• Listing of pdb codes for AB database.  
 � i) Antigen-antibody pairs (PDB ID)1MHP, 1MLC, 

1VFB, 3HFM, 1DQ J , 1BJ1, 1CZ8, 3BDY, 3BE1, 1N8Z, 
3BN9, HM_3BN9, 2NY7, 3NGB, 2NYY, HM_2NYY, 
2NZ9, HM_2NZ9, 2JEL, 3NPS, hu225:HM_1YY9, 
Epithin:HM_3BN9,  CR1:HM_2NYY, AR2:HM_2NZ9

IN SILICO PREDICTION OF ΔΔG AS A 
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Figure 1:   The number of monoclonal antibody products first 
approved for commercial sale in the US or Europe each year since 
1982 is shown.  D.M. Ecker, et al.,MAbs. 2015 Jan-Feb; 7(1): 
9–14., “The therapeutic monoclonal antibody market.”



 � ii) Effector-Antibody pairs (PDB ID) 1T83, 3WJJ, 1JRH
 � iii) Monobody-Antigen (PDB ID) 3K2M
 � iv) Protein1-Protein2 (PDB ID)  TGFbeta3:HM_1KTZ, 

1KTZ, 1AK4 
 
v) Effector-Effector (PDB ID) 1DVF  
 - Note: homology model names are written as 
<name>:HM_pdbID where HM=homology model.

 � 32 base antibodies with between 7 and 246 variants 
present for each.

•  Each variant consisted of between 1 and 16 simultaneous 
mutations.

• 635 single-point mutations, of which 403 were alanine.  
466 variants consisting of multiple mutations for which 
242 included at least one alanine. Of these 92 contained 
multiple alanine mutations. 

• 119 variants that consisted of multiple mutations 
were composed of single-point mutations with known 
(individual) ΔΔG values.

• The location of the mutations relative to the binding 
interface was determined and results were reported as a 
total and for each category.

2. Experimental Measurements of change in binding energy
• Multiple methods were used to calculate the binding 

energy (ΔΔG) for each variant in this study:   Surface 
Plasmon Resonance (SPR),  AlphaScreen, ELISA, Kinetic 
Exclusion Assay (KinExA), Phage-ELISA, Yeast surface 
display analyzed with flow Cytometry, two different 
enzymatic methods1  with the change in binding energy 
over all mutations ranging from +8 kcal.mol to -3 kcal/mol. 

3.Calculation of change in binding 
• The change in binding energy for each variant was 

calculated with multiple methods:  baSA-buried accessible 
surface area, dDFIRE , DFIRE , STATIUM , Rosetta , FoldX , 
and BIOVIA Discovery Studio7 8   .

• The results were compared to experimental using AUC 
(Area under Curve) from Radio Operator Characteristic 
(ROC) curves. 

RESULTS
The calculated values are not reported in the study or 
supplements.   However, the binding data was categorized into 
four groups based on experimental change in binding energy:   
| exp ΔΔG| > 0 (all data), | exp ΔΔG| < 0.5 (smallest change), | exp 
ΔΔG| > 0.5, and | exp ΔΔG| > 1.0 (largest change).  In the paper, 
ROC curves were primarily used to determine the ability of the 
calculation methods to predict if a variant would be weaker or 
stronger binding than the parent compound.   All prediction 
methods performed better on average for larger absolute 
value experimental ΔΔG values.     The Pearson correlation 
coefficients (R-values) are also instructive to compare the 
different computational methods in this study.  Although the 
actual computed ΔΔG values are not reported, supplement 
1 (pro2829-sup-0001-suppinfo01) does contain the overall 
R values.   These values are shown in Table 2.  The top two 
correlation coefficients are 0.34 for FoldX and 0.45 for BIOVIA 
Discovery Studio. 

A variety of  subdivisions of the dataset were analyzed to 
understand the dependence of the observed performance for 
groupings such as amino acid type, experimental method used, 
crystal resolution, proximity of the mutation(s) to the center of 
the complex interface, among others.  

This paper reports that most methods performed better when 
the mutation was in the “Core” (defined as > 25% exposed 
unbound and <25 % exposed bound) of the binding region, 
relative to mutations at the “Rim” (<25% ΔASA exposed 
bound).  For example, focusing on the ability to correctly 
predict Stronger versus Weaker binding for a variant expressed 
as a 95% confidence interval for Core mutations versus Rim 
mutations yields the following.   For BIOVIA Discovery Studio, 
the Core mutation confidence level was 0.84 →1.00, and 
for the Rim variants it was 0.49 → 0.87.     For the next 
best performing method, FOLDX, the Core confidence level 
was 0.76-0.96 and the Rim confidence was 0.43 → 0.79.     
Overall, BIOVIA Discovery Studio demonstrated better than a 
10-fold enrichment in the top 1% of binders from this data set  
(11.4 %).

Method All data | exp ΔΔG| < 0.5 | exp ΔΔG| > 0.5 | exp ΔΔG| > 1.0

bASA 0.63 nr 0.67 0.68

dDFIRE 0.59 0.58 0.62 0.66

DFIRE 0.65 0.60 0.73 0.78

Discovery Studio 0.73 0.64 0.82 0.88

FoldX 0.70 0.66 0.81 0.87

Rosetta 0.61 0.53 0.65 0.70

STATIUM 0.64 0.60 0.74 0.81

Table 1:   Values shown are the AUC for ROC plots for each method showing performance in 
classifying mutations as either improved vs. weakened binders.

bASA dDFIRE DFIRE STATIUM Rosetta FoldX Disovery Studio

0.22 0.19 0.31 0.32 0.16 0.34 0.45

Table 2:   Pearson correlation coefficients for all ΔΔG (computed vs. experiment) improved versus 
weakened relative to the parent complex.



DISCUSSION
There is a broad range of methods that in principle could be 
used to predict in silico binding energies, or solvation stability 
changes due to mutation.  This study only evaluated methods 
that could scan moderate to large numbers of mutations in 
a time frame that was deemed to be acceptable to current 
pharmaceutical discovery standards.  For this reason very 
compute-intensive methods such as FEP and SMD were not 
considered.   There have been several other comparisons of 
binding energy predictions due to mutations.   This study, 
however, is notable for the concentration of non-alanine 
mutations (55%) and a large number of multiple simultaneous 
mutations, rather than containing only single-point mutations.  
Due to synergies resulting from multiple simultaneous 
mutations relative to the energy change obtained from point 
mutations, it is frequently critical to be able to predict changes 
due to multiple mutations.  When predicting ΔΔG(mutation) or 
ΔΔG(stability) it is common to assume that the mutation does 
not affect more than the local environment of the antibody.  
This is due to the vast difference in computation resources 
that would be required to identify such changes.  Similarly, 
the potential influence of solvent composition including ions 
is generally not considered.  This study makes the further 
assumption that the ΔΔG(mutation) is not affected by pH (for 
example pH differences between the experimental conditions 
at which the ΔΔG was measured and that for which the crystal 
was isolated).  

In this study of the 1,102 mutants listed in supplement 2,494 
variants included the mutation of at least one ionizable residue. 
In these variants a total of 992 individual residues are either 
mutated to or from an ionizable residue (ERDK).  This opens 
the possibility that the ionization state of these residues and 
proximate residues might change in the bound complex.

Unlike most commercial methods, BIOVIA Discovery Studio 
ΔΔG(mutation) and ΔΔG(stability) methods include the ability 
to determine the pK shifts of the input protein residues on-the-
fly and from this predict the changes of binding (or stability) as 
a function of pH and changing local environment (ΔΔG vs pH).    
We have shown that binding   and protein stability predictions  
are improved by explicit consideration of the ionizable residues 
pK, the pH of the system and the environmental changes that 
occur in the bound versus free environments.   We expect that 
methods such as those implemented in BIOVIA Discovery Studio 
that scan protonation states would have further improved the 
industry-leading predictions of BIOVIA Discovery Studio in this 
study.  In addition, the option of including pH-dependence 
in our method allows monitoring of the change in net charge 
and prediction of pH regions with minimum solubility for each 
mutant.  The method also extends applicability to  new areas 
such as improving antibody half-life, tuning binding in cellular 
compartments or  tissues with different pH than serum (e.g., 
endosomes or cancer tissues)  or to guide  the design of “pH 
switching” of stability or binding affinity (e.g., for the purposes 
of biotechnology).    

CONCLUSIONS 
The predicted change in affinity for a protein complex was 
tested versus experiment for over 1,000 mutation variants 
of 32 bound complexes.  Many of these variants were the 
result of multiple simultaneous mutations and involved a 
diverse range of amino acid residue types (not just single-point 
mutations or mutations to alanine).  The results show that the 
predictions made by BIOVIA Discovery Studio are sufficient to 
be able to direct development towards mutations that enrich 
binding affinity.  This coupled ability to explore the change in 
energy with mutation can be combined with other capability 
in BIOVIA Discovery Studio to predict and then reduce the risks 
associated with high viscosity, or aggregation, or decreasing 
folding stability.  BIOVIA Discovery Studio provides a unique 
solution to reduce development and formulation time, enabling 
organizations to bring biotherapeutic or diagnostic products to 
market faster.

Figure 2:  Alpha1-beta1 (VLA-1) integrin with (1MHP) showing 
interactions with AQC2 Fab
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