Worksheet	Name
Heat Capacity	Date
It is often pointed out that the heat capacity of water for the Earth's climate, for physiology, ecology, and	er is "exceptionally large" and that this has many ramifications more. Is water really all that exceptional?
	f substances not only the molar heat capacity C , but also the α (or short "specific heat") is the heat capacity per α rather the two quantities involves the molar mass M :
	c = C / M
• Start simulations of the following substances:	
• Water	
C Hydrogen Cyanide	
Copper	
C <u>Ammonia</u>	
C <u>Oxygen</u>	
C <u>Iron</u>	
C <u>Hydrazine</u>	
ODYSSEY can determine the molar heat capacity	from a simulation without having to change the temperature: $C = \dots$
Rough estimates from simulation runs of ~20·10 substances. (For accurate figures, longer runs m	o ⁻¹² s duration are sufficient for a qualitative comparison of the hay be required.)

Together with the information for the molar mass	S
M	= 18.01 g mol ⁻¹
you can determine the specific heat capacity.	
Give the molar heat capacities: ———————————————————————————————————	
2. Are the molar heat capacities of the substant range?	ces all that different? If yes, where does water fall within the

_

3.	Give the specific heat capacities: ———————————————————————————————————
4.	Are the specific heat capacities of the substances all that different? If yes, where does water fall within the
	range?
5.	In what sense is the heat capacity of water "exceptionally large"?
6.	Is water the only substance with an "exceptionally large" heat capacity?
7.	The specific heat capacity of solid water (ice) is \sim 2.0 J K ⁻¹ g ⁻¹ and for gaseous water (steam) it is \sim 2.0 J K ⁻¹ g ⁻¹ . Is it water in general or is it just <i>liquid</i> water that is "special"?