
Faster Risk Calculation: Next Generation dco/c++
Johannes Lotz (NAG) and Uwe Naumann (RWTH Aachen University and NAG)

number of parameters

ru
nt

im
e

fa
ct

or

fo
rw

ar
d

m
od

e

or
 b

um
pi

ng

reverse mode

constant

factor
reverse mode
(dco/c++ gold)

(dco/c++)

Trading Desks can hedge auspiciously and gain a competitive edge in the market as our mathematical
algorithm technology, dco/c++, gives them rich, cheap and accurate intra-day risk. This fast and
accurate risk data at lower cost means more profits for traders and for the business.

Automatic Differentiation (AD) and NAG’s Portfolio
For an implementation of a multi-variate scalar function, i.e.,

y = f (x), x ∈ IRn, and y ∈ IR,

Automatic Differentiation (AD) computes exact and efficient first and higher derivatives.

Forward Mode: Cost(∇f) = O(n) · Cost(f)

Reverse Mode (AAD): Cost(∇f) = O(1) · Cost(f)

NAG’s AD

Solutions

gold

AD Myths

D
ebunked

Code Generation

Overloading techniques
dco::codegen<>::type

Database of adjoint codes
(Hash on DAG)

Execute adjoint with
builtin data types (double)

Generate once

Reuse many times

+ ease of use
+ language coverage

+ efficiency

Parallel Taping
• Tape recording is the bottleneck (see on the right).

• We use OpenMP during tape recording.

• Each thread records a chunk of the tape.

Dedicated Adjoint Vector
• The tape holds memory for:

a) statement-level gradients (sequential access),
b) the vector of adjoints (random access).

• The gradients can be written to disk with reason-
able runtime hit. The vector of adjoints can not!

• The dedicated adjoint vector reduces the required
size of the vector of adjoints to fit it into memory.

Increase Performance and Reduce Memory Use
dco/c++ provides low cost, accurate sensitivities computed 10x to 6000x faster than alternative methods, all
whilst reducing memory usage. At NAG, research goes hand-in-hand with professional software development.

• Supports branches.

• Seamless integration
with dco/c++.

• Supports just-in-time
compilation.

auto cg =
dco::generate(f,

dco::in(x),
dco::out(y)
);

cg.adjoint(px, ax,
py, ay);

cg.primal(px, py);

Vectorization

• Better performing explicit use of vector intrinsics instead of relying on the compiler’s auto-vectorizer.

• Biggest benefit for dco/c++ vector modes when computing Jacobians and Hessians.

Case Study: Monte Carlo Simulation
As case study we take a simple SDE-based European option pricer using Monte Carlo sampling.

• Top-level adjoint code:
using mode_t = dco::ga1s<double>;
using type = mode_t::type;

mc::active_inputs<type> X(S0, r, K, T, vols);
mc::passive_inputs XP(N, M);
mc::active_outputs<type> Y;
mc::passive_outputs YP;

auto pricer = [&](auto const& X, auto & Y)
{ mc::price(X, XP, Y, YP); };

auto jac = dco::jacobian(pricer,
dco::in(X),
dco::out(Y));

std::cout << "Y = " << Y.V << "\n";
std::cout << "dY/dX = " << jac << "\n";

Y = 32.6944
dY/dX = 0.982097 [...] -1.04929

• Monte Carlo core:
//** mcpath(X, XP, Z)

type mcdt = X.T / (XP.M-1);
type logS = log(X.S0), t = 0;

for(int i = 0; i < XP.M; ++i, t += mcdt) {
type volS = sqrt(X.sigmaSq(logS, t));
logS += (X.r-0.5*volS*volS)*mcdt

+ volS*sqrt(mcdt)*Z[i];
}
type ST = exp(logS);
return dco::condition(ST < X.K, 0,

exp(-X.r*X.T)*(ST-X.K));

//** price(X, XP, Y, YP)
std::vector<double> Z(XP.M);
for(int p = 0; p < XP.N; p++) {

randNormal(XP.M, XP.rngseed, Z);
Y.V += mcpath(X, XP, Z);

}
Y.V = Y.V / XP.N;

Performance and Memory Use
For computing the gradient of above example code, we compare plain dco/c++ with pathwise
adjoints and code generation approaches⇒ 10k Monte Carlo paths and 360 Euler steps in each path.

• Parallel taping makes use of unused, idling cores during tape recording. Speedup up to 4x for 32 cores.

• Dedicated adjoint vector reduces the required memory by factors of 10 to 1M (depending on structure).

• Explicit vectorization increases performance 2x (AVX2) to 4x (AVX-512) compared to the auto-vectorizer.

dco/c++ gold: Achieve significant performance increase and reduction in memory use.

Numerical Algorithms Group Ltd. support@nag.co.uk www.nag.com

