Faster Risk Calculation: Next Generatior

Johannes Lotz (NAG) and Uwe Naumann (RWTH Aachen University and NAG)

Trading Desks can hedge auspiciously and gain a competitive edge in the market as our mathematical
algorithm technology, dco/c++, gives them rich, cheap and accurate intra-day risk. This fast and

accurate risk data at lower cost means more profits for traders and for the business. AD Mvih As case study we take a simple SDE-based European option pricer using Monte Carlo sampling.
yths
7

Case Study: Monte Carlo Simulation

Automatic Differentiation (AD) and NAG’s Portfolio NS A * Top-level adjoint code: * Monte Carlo core:
For an implementation of a multi-variate scalar function, i.e., = using mode_t = dco::gals<double>; //x+ mepath(X, XB, 2)
- = using type = mode_t::type; type medt = X.T / (XP.M-1);
y:f(x), XE]R”7 andyER7 % type logS = log(X.S0), t = 0;
& mc: :active_inputs<type> X (S0, r, K, T, vols);
Automatic Differentiation (AD) computes exact and efficient first and higher derivatives. mc::passive_inputs XP (N, M); for(int i = 0; 1 < XP.M; ++i, t += mcdt) {
mc::active_outputs<type> Y; type volS = sgrt (X.sigmaSqg(logS, t));
Forward Mode: C03t<Vf) — O(n) : Cost<f) mc: :passive_outputs YP; logS += (X.r-0.5xvolS*volS) *mcdt
A + volSxsqgrt (mcdt) *xZ[1];
Reverse Mode (AAD) COSt(Vf) = O(l) . COSt(f) . auto pricer = [&] (auto consts& X, auto & Y) }
% Cost(V f) { mc::price(X, XP, Y, YP); }; type ST = exp (logS);
& COSt(f) return dco::condition (ST < X.K, 0,
g auto jac = dco::jacobian (pricer, exp (—X.r*X.T) * (ST-X.K));
é dco::1in (X),
w = dco::out (Y)); //*% price (X, XP, Y, YP)
=3 std: :vector<double> Z (XP.M);
= ; reverse mode std::cout << "Y = " << Y.V << "\n"; for(int p = 0; p < XP.N; p++) {
5' C(S(ﬁ;"" y f (dco/c++) std::cout << "dY/dX = " << jac << "\n"; randNormal (XP.M, XP.rngseed, 7);
a Y.V += mcpath (X, XP, Z);
' ;’O“tStant< reverse mode Y = 32.6944 }
user code R ¢ (dco/c++ gold) dy/dx = 0.982097 [...] —-1.04929 Y.V = Y.V / XP.N;
\
>
deofe+ umber of parameters Performance and Memory Use
For computing the gradient of above example code, we compare plain dco/c++ with pathwise
Increase Performance and Reduce Memory Use adjoints and code generation approaches = 10k Monte Carlo paths and 360 Euler steps in each path.
dco/c++ provides low cost, accurate sensitivities computed 10x to 6000x faster than alternative methods, all
whilst reducing memory usage. At NAG, research goes hand-in-hand with professional software development. 3.2X 10000
600 2 9X M reverse sweep reduction of
C d G t' p el T . ' (interpretation)
ode Lreneration e Supports branches. aratict 1aping 500 m forward sweep 1000
. . . ding)
- : e Tape recording is the bottleneck (see on the right). (recor
Overloading techniques * Seamless 1ntegrat10n P S . . 5
dco::codegen<>::type with dco/c++. * We use OpenMP during tape recording. @ 400 1.8x % 100
© ease of Use e Supports just-in-time * Each thread records a chunk of the tape. S %‘
Generate once __— £ 300 =
+ language coverage compilation. = e 10
Dedicated Adjoint Vector =
Database of adjoint codes auto cg = 200
[(Hash on DAG)] dco: :generate (f, * The tape holds memory for: 1
dco::in(x), a) statement-level gradients (sequential access), 100
Reuse many times | -+ efficiency dco::out (y) ..
) ; b) the vector of adjoints (random access). o1
0 ' . :
(Execute adjoint with) cg.adjoint (px, ax, e The gradients can be written to disk with reason- primal plain pathwise codegen plain pathwise codegen
builtin data types (double) , . 1 1 101 ! . . 11 . .
oq.primal (pzy p;?’), able runtime hit. The vector of adjoints can not e Parallel taping makes use of unused, idling cores during tape recording. Speedup up to 4x for 32 cores.
o ° 1
The dedicated adjoint vector redu§e§ the required e Dedicated adjoint vector reduces the required memory by factors of 10 to 1M (depending on structure).
size of the vector of adjoints to fit it into memory.

Vectorization Explicit vectorization increases performance 2x (AVX2) to 4x (AVX-512) compared to the auto-vectorizer.

 Better performing explicit use of vector intrinsics instead of relying on the compiler’s auto-vectorizer. : .. : .
dco/c++ gold: Achieve significant performance increase and reduction in memory use.

* Biggest benefit for dco/c++ vector modes when computing Jacobians and Hessians.

Numerical Algorithms %roup L. }support@nag.co.uk ‘ WWWw.nag.com

