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Currency allocation for central banks is formulated as a dual benchmark 

optimization problem in which central banks may attach different weights to a  

nominal wealth preservation benchmark (local cash) and a liquidity 

benchmark (short term debt and imports). Currency returns are modeled as 

drawings from two regimes, allowing for shifts in correlation and volatility as 

well as for non-normality. To construct optimal portfolios we use a novel 

approach to dual benchmark optimization that allows for multiple 

benchmarks, multiple risk regimes, and non-normality 
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1. Currency Allocation and Central Banks 
 
Currency reserve management centers around a set of related questions. Central banks need 

to determine the optimal level of reserves, the optimal split between highly liquid assets 

(which can easily be converted into cash in times of market stress) and less liquid assets (also 

called alternatives), as well as the optimal choice  between currencies (currency allocation). 

This paper will concentrate on the later problem.  

 

Allocating among currencies is complicated by the fact that they represent assets and the 

numeraire at the same time. For example: the volatility of short term US bonds (assets) 

depends on whether we view them from a European or a Japanese perspective (numeraire). 

However, so far the literature on currency benchmarking problems has narrowly focused on 

either one of the following optimization problems.1  

 

  Wealth preservation approach. Wealth put into foreign assets is volatile in terms of the 

numeraire (home) currency.  Hence positions are often diversified across many currencies  

to enjoy a reduction of risk. 

 

  Liquidity preservation approach.  To ensure international solvency  (at least in the 

short run) central banks need enough reserves to cover imports, or to service foreign debt 

payments. The closer the currency composition to this allocation the less risky it is even 

though it might be very volatile in terms of the home currnency. 

 

Rather than simply following one of these approaches in isolation the currency allocation is 

presented as a multi-objective optimization problem in which central banks can not only 

attach different weights to each subproblems, but are also allowed to consider alternative risk 

regimes.  

 
 

2. Currency Returns: Rival Risk Regimes and Non-Normality 
 
Portfolio construction requires inputs. There is a vast literature on currency returns in 

particular, and on input estimation for portfolio optimization in general. We do not provide a 

                                                           
1 Currency return optimization relative to various benchmarks has been addressed in Boorman/Ingves (2001), 
Ramaswamy (1999) and Scobie/Cagliesi (2000). Dual Benchmark Optimization is covered in Scherer (2002).  
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comprehensive review or argue for a preferred methodology. Instead we focus on two aspects 

of currency returns that ared used in the following sections.  The currencies we focus on are 

US Dollar,  UK Pound, Japanese Yen, Australian Dollar, Swiss Franks (all against the Euro). 

We use weekly return data (currency plus local cash return) from J.P. Morgan covering the 

period from January 1986 to December 2002.  

 

It is well known that correlations break down in times of market meltdowns, i.e. when 

portfolio managers need them most. We will not attempt to forecast the change in input 

parameters. However we look for a tool to evaluate the diversifying properties of currencies 

in rivalling risk regimes. As supervisory boards become more and more concerned about 

short term performance, investors often do not have the luxury to bet on average correlation 

or average volatility. To come up with correlation and volatility estimates for normal and 

hectic times have to define first what exactly do we mean with unusual times.2 We define 

unusual times according to their statistical distance from the mean vector as given in  

(1.1) ( ) ( )1 1T T
m m m

− −− − =R mµ Ω R µ d Ω d  
 
 
where  reflects the distance vector at time m ,  is a vector of currency return 

observations for  currencies at time , 

md mR

N m µ  denotes a vector of average currency returns 

and  is the unconditional covariance matrix (over all m  observations). For each 

cross section of stock returns we calculate (1.1) and compare it to the critical value of 

a . If we define an unusual observation as the outer 5% of a distribution 

(alternatively one might call it outlier) for 5 return series, the cut off distance is 11.07. In 

(1.1) the return distance is weighted by the inverse of the covariance matrix. Thus, we take 

into account currency volatilities (The deviation from mean might be significant for low 

volatility series, but not necessarily for high volatility series) and correlations (return 

differences of opposite sign for two highly correlated series might be more unusual than for 

series with negative correlation). Hence outliers are, in theory, not necessarily associated 

with down markets (although they are often in practice). The correlation matrices for normal 

and hectic times are given below.  

Ω̂
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2 See Chow et al (1999).  
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              USD    UKP   YEN    ASD     FRK    EUR
1,0 0,5 0,5 0,7 -0,1 -0,1
0,5 1,0 0,3 0,4 0,1 0,0
0,5 0,3 1,0 0,4 0,1 0,0
0,7 0,4 0,4 1,0 -0,1 -0,1
-0,1 0,1 0,1 -0,1 1,0 0,0
-0,1 0,0 0,0 -0,1 0,0 1,0

normal

 
 
 
 

=  
 
 
   

ρ

              USD    UKP   YEN    ASD     FRK    EUR
1,0 0,4 0,5 0,8 0,0 0,1
0,4 1,0 0,1 0,3 0,0 0,0
0,5 0,1 1,0 0,4 0,2 0,0
0,8 0,3 0,4 1,0 0,0 0,1
0,0 0,0 0,2 0,0 1,0 0,1
0,1 0,0 0,0 0,1 0,1 1,0

hectic

 
 
 
 

=  
 
 
   

ρ

 

Table 1. Correlation in normal and hetic times 
 

Interestingly to see that correlations between currency returns remain virtually unchanged in 

crisis times. The only exception seems to be the Australian Dollar, which exhibits a slight 

increase in correlation in hectic periods. With diversification properties unchanged, 

international currency allocation keeps its attractivness in times of market crisis. Apart from 

correlations we can also calculate the corresponding volatilities.  

 
9,3

6,6 0
9,8

11,9
0 3,6

0,4

normal

 
 
 
 

=  
 
 
   

σ

20,6
14,6 0

20,1
26,4

0 7,
0,4

hectic
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=  
 
 
   

σ
 

Table 2. Volatility in normal and hectic times 
 

The dramatic rise in risk (volatility more than doubles) as we move from normal to hectic 

times is apparent. We can now glue together the above results to arrive at the covariance 

matrices  

 

s s s s=Ω σ ρ σ  

 

with for later use. Effectivly, we split the coavriance matrix into a high 

and a normal volatility regime.  

,s normal hectic=

 

So far we have assumed normality in currency returns. How well does this approximization 

hold? Studying Figure 1and Figure 2 shows that returns are fat tailed (deviation from the 

straight line in the QQ-plot at both ends) and sometimes skewed (deviation from the straight 
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line in the QQ-plot at both ends) as in the case of the Japanese Yen. Section 5 will investigate 

the impact of non-normality on optimal portfolio choice.  
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Figure 1.  Histogram of currency returns 

Quantiles of Standard Normal

U
SD

-3 -2 -1 0 1 2 3

-0
.0

4
0.

02

Quantiles of Standard Normal

PO
U

N
D

-3 -2 -1 0 1 2 3

-0
.0

8
-0

.0
2

0.
04

Quantiles of Standard Normal

YE
N

-3 -2 -1 0 1 2 3

-0
.0

5
0.

05

Quantiles of Standard Normal

AU
SD

-3 -2 -1 0 1 2 3

-0
.0

5
0.

05

Quantiles of Standard Normal

FR
K

-3 -2 -1 0 1 2 3

-0
.0

2
0.

0
0.

02

Quantiles of Standard Normal

EU
R

-3 -2 -1 0 1 2 3

0.
0

0.
00

10
0.

00
25

 
Figure 2. QQ-plot of currency returns 
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Finally, we need estimates of  expected currency returns. We use the James-Stein estimator to 

reduce estimation error in means and, hence reduce the tendency to arrive at corner solutions 

(solutions where asset weights are limited by their constraints).  The estimator rests on the 

notion that we can improve the efficiency of the historical mean estimate on an individual 

return series by pooling the information in all series. 

 

Effectively the JS estimator shrinks  the individual historical means towards the grand mean 

of all time series. In the case of complete shrinkage we arrive at means equal to the grand 

mean and will ultimately end up with the minimum variance portfolio.  The JS estimator 

 
 
(1.2) ( )1φµ φ= + −µ I µ  
 
where µ  denotes the grand mean of all series 

1

N
nn

µ µ
=

= ∑ ,  represents a vector of ones 

and 

I

µ  reflects the vector of historical means. The shrinkage factor can be derived from  

 

(1.3) ( )
( ) ( )1

2
min 1, T

N

M
φ

µ µ−

 −
=  

− −  µ I Ω µ I
 

 

If ( ) (1T )µ µ−− −µ I Ω µ I  is small, either because the distance between the historical means 

and the grand mean is small, or because the precision of our estimates is small, the James-

Stein estimator will shift our estimates towards the grand mean. The same is true if the 

number of assets is large, or the number of observations is low.  

 

3. Multiple Benchmarks and Rival Risk Regimes 
 
 
When predicting future currency returns, decision makers often fail to agree on the 

probability ordering of alternative currency risk regimes. Additionaly, they might differ in the 

importance they attach to a wealth preservation benchmark (local cash) versus a liquidity 

preservation benchmark (short term debt and imports). Suppose central bankers face 

 risk regimes, reflected in the associated currency covariance matrices 1s = LS sΩ  and 
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1b = LB  currency benchmark portfolios. The central bank is allowed to invest  

assets summarized in the vector of currency holdings, . The optimization problem becomes 

1n N= L

w

b sΩ

λ

( )b

5 0

                                                          

 

(1.4) ( ) ( )( ), 0 ,
max max TT

bs b
λ

≥
 − − − w w

w µ w w w w  

 

where  reflects the central bank‘s risk aversion. This approach allows us to find protection 

against the risk of adopting an investment strategy based on the wrong benchmark or/and the 

wrong risk regime. We can reformulate (1.4) in a way digestable to solvers for constrained 

quadratic programs.3 

 

  

( )
( )

2
max

2
max

,

2
max

max

1

0

T
b s

T

T

σ
µ λσ

σ

µ

−

− − ≤

=

=
≥

w

w w Ω w w

w I
w µ
w

 
Note that this defaults to standard markowitz optimization for . In the following, 

we assume two benchmarks (liquidity and wealth preservation) as  

1, 1s b= =

( )
( )
0 0 0 0 0 1

0,5 0 0, 0 1

T
wealth

T
liquidity

w

w

=

=
 

and two risk regimes.  The wealth benchmark consists of 100% Euro cash, while the liquidity 

preservation benchmark is assumed to contain 50% US Dollar and 50% Yen. These figures 

hypothetical, but provide a numerical example.  We can now investigate the effect of two 

benchmarks on portfolio choice. Suppose we start with a portfolio of 100% US Cash and 

gradually move allocations into Euro Cash. Which effect would this have on benchmark 

relative risk? Suppose a central bank with the above benchmark definitions and risk regimes 

chooses a 20% allocation in the US Dollar. The relative riskiness varies between 1.87% 

(wealth benchmark in normal times) and 13.99% (liquidity benchmark in hectic times) in 

Figure 3. Board members might argue about the riskiness of any given strategy depending on 

which weight they place on the respective benchmarks and risk regimes.  

 
3 All optimizations have been performed using NUOPT for S-Plus. See Scherer/Martin (2003) for an extensive 
treatment of portfolio optimization problems in S-Plus. 
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Figure 3. Realtive risks under alternative benchmarks and risk regimes 

 

Hence the regret of having decided to manage against the wrong benchmark in the wrong risk 

regime is potentially large. However allocating 50% to both  US Dollar and Euro will 

significantly narrow the range of potential outcomes anywhere between 4.67% and 10.27%. 

In contrast to the 20%/80% allocation he worst case riskiness falls to 10.275 (from 13.99%).  

 

So far we have only addressed risk issues for a simple two currency portfolio. We will now 

directly solve (1.4). The optimization results can be seen in Table 3 through Table 5. 

 

Currency p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

USD 0,00% 25,61% 19,07% 12,09% 5,13% 0,66% 0,02% 0,00% 0,00% 0,00%
Pound 0,00% 0,00% 6,95% 15,16% 23,35% 32,78% 44,05% 55,63% 67,22% 100,00%

Yen 0,00% 23,91% 24,65% 24,24% 23,83% 21,90% 17,67% 13,05% 8,43% 0,00%
AUSD 0,00% 0,00% 4,33% 9,43% 14,51% 18,35% 20,29% 21,91% 23,52% 0,00%
FRK 100,00% 10,65% 0,07% 0,09% 0,02% 0,05% 0,00% 0,00% 0,00% 0,00%
EUR 0,00% 39,84% 44,93% 38,99% 33,15% 26,26% 17,98% 9,41% 0,83% 0,00%
Risk 18,33% 8,71% 8,76% 9,07% 9,58% 10,28% 11,21% 12,36% 13,67% 19,22%

Return -0,42% -0,13% 0,17% 0,46% 0,76% 1,05% 1,35% 1,64% 1,94% 2,23%  

Table 3.  Optimal portfolios with rivalling risk regimes 
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Currency p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

USD 0,00% 25,90% 19,87% 14,02% 8,08% 2,47% 0,12% 0,00% 0,01% 0,00%
Pound 0,00% 0,04% 8,29% 18,38% 28,35% 38,43% 49,83% 62,14% 74,49% 100,00%

Yen 0,00% 23,97% 24,29% 23,50% 22,65% 21,64% 18,26% 13,28% 8,20% 0,00%
AUSD 0,00% 0,06% 2,84% 5,78% 8,94% 11,89% 13,54% 14,28% 14,97% 0,00%
FRK 100,00% 10,95% 0,10% 0,01% 0,26% 0,00% 0,00% 0,00% 0,00% 0,00%
EUR 0,00% 39,08% 44,62% 38,31% 31,72% 25,57% 18,25% 10,31% 2,34% 0,00%
Risk 8,88% 4,11% 4,14% 4,28% 4,53% 4,85% 5,25% 5,75% 6,32% 7,85%

Return -0,42% -0,13% 0,17% 0,46% 0,76% 1,05% 1,35% 1,64% 1,94% 2,23%  
 

Table 4.  Optimal portfolios with dual benchmarks and single risk regime (normal times) 

 
 
Currency p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

USD 0,00% 25,61% 19,07% 12,10% 5,14% 0,03% 0,01% 0,00% 0,00% 0,00%
Pound 0,00% 0,00% 6,95% 15,15% 23,36% 32,46% 44,04% 55,63% 67,22% 100,00%
Yen 0,00% 23,91% 24,65% 24,25% 23,82% 22,29% 17,68% 13,05% 8,42% 0,00%
AUSD 0,00% 0,00% 4,34% 9,42% 14,50% 18,66% 20,29% 21,91% 23,53% 0,00%
FRK 100,00% 10,65% 0,10% 0,04% 0,03% 0,00% 0,00% 0,00% 0,00% 0,00%
EUR 0,00% 39,84% 44,90% 39,05% 33,14% 26,55% 17,98% 9,41% 0,83% 0,00%
Risk 18,33% 8,71% 8,76% 9,07% 9,58% 10,27% 11,21% 12,36% 13,67% 19,21%
Return -0,42% -0,13% 0,17% 0,46% 0,76% 1,05% 1,35% 1,64% 1,94% 2,23%  

Table 5. Optimal portfolios with dul benchmarks and single risk regime (hectic times) 

 

We see that our optimization results are (not surprisingly) dominated by the worst case risk 

scenario. Hence the solutions in which we used both regimes are virtually identical to the 

solutions in which we only used the hectic regimes. The associated risks are also much higher 

than in normal times. If we compare these results with allocations in which we only used the 

covariance matrix for normal times, we see that the differences are less pronounced than we 

might have expected. However as correlations hardly change and all volatilities increased by 

similar magnitude this makes perfect sense. The only exception is the Australian Dollar that  

attracts higher allocations because of the improved risk return tradeoff. Note that the 

minimum risk portfolio remains unchanged under all optimizations above, further supporting 

our observation that the relative riskiness is stable.   

 

4. Multiple Benchmarks and Pareto Optimality   
 

So far we did not allow for varying risk preferences which would allow us attach different 

weights to the various subproblems. However this will be introduced now.4   

 

                                                           
4 See Shectman (2000) on pareto optimality and dual benchmark optimization.   
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(1.5)  ( ) ( )( ),,, 0
max min TT

s b b s bs b
λ

≥
 − − − w w
w µ w w Ω w w

 
 

Equation (1.5) poses the problem of maximizinig the minimum risk adjusted performance 

(utility) across both alternative benchmarks, risk regimes, and the associated risk aversion 

coefficients. This is equivalent to maximizing the minimum utility (assuming mean variance 

preferences). The resulting solution is pareto optimal in the sense that we can not increase 

utility any further without pushing utility from another subproblem below the minimum 

utility. Note that (1.5) differs from the conventional treatment of multiple benchmark 

problems5 

 

(1.6)  ( ) ( ) ( ) ( )( )1 1 1 2 2 2, 0
max T TT λ λ

≥
− − − − − − −

w w
w R w w Ω w w w w Ω w w L

 

We will look at the same benchmarks and risk regimes as in the previous section. Solutions 

will vary according to the risk aversion parameters attached to  both benchmarks. Results are 

summarized in Table 6. In the case of decision makers exhibit low risk aversions ( )  we 

find the solutions to focus on assets with the highest returns. If the import coverage 

benchmark becomes more important (higher penalty term for relative risk)  allocations tend 

to become closer to this benchmark (assumed to be 50% USD and 50% Yen). In the case of  

both risk aversion parameters equal 30 (which can be interpreted as extremly risk averse) we 

arrive at the intermediate solution that invests into the equal weighted benchmarks. If on the 

other extreme central bankers put an overwhelming emphasis on the avoidance of wealth 

benchmark relative risk, we naturally come close to this benchmark (81% weighting in local 

cash). Obviously this is a solution favoured only by a small number of central banks.  We 

should note that the case of extreme risk aversion with regard to both benchmarks is 

relatively close to the minimum variance solution.  We see that the optimal solution depends 

on the degree of risk aversion to the respective benchmark relative risks. Hence the above 

optimization framework offers a straightforward way to arrive at the optimal currency 

allocation given that risk aversions with respect to benchmark relative risks differ. To assess 

which importance has been given to the rivalling risk regimes we can rerun the optimization 

above, this time however with only one risk regime, namely normal tines. The results are 

outlined in Table 7. When risks are considerably lower (normal times), it is optimal to 

1sλ =

 -  11  - 



 

allocate to the maximum return currency (99% in UK Pound for the used data set, time 

period and currency perspective). However for high risk aversions the results are almost the 

same as in Table 6.  If risk aversions are sufficiently high, the level of risk does not matter.  

In general, there is a clear tendency to allocate more to the high return asset classes. All other 

results remain qualitatively the same.  

 
λ2=1 λ2=3 λ2=10 λ2=30
0% 7% 25% 35% USD
53% 32% 17% 9% Pound
12% 32% 39% 43% Yen
21% 20% 10% 6% AUSD
0% 0% 0% 0% FRK
14% 9% 9% 7% EUR
0% 8% 23% 33% USD
29% 20% 11% 6% Pound
10% 24% 32% 38% Yen
13% 12% 7% 4% AUSD
0% 0% 0% 0% FRK
48% 37% 27% 19% EUR
0% 8% 20% 29% USD
15% 11% 6% 3% Pound
8% 17% 25% 31% Yen
8% 7% 4% 2% AUSD
0% 0% 0% 0% FRK
69% 58% 46% 34% EUR
0% 6% 15% 23% USD
9% 6% 3% 2% Pound
5% 11% 18% 25% Yen
5% 4% 2% 1% AUSD
0% 0% 0% 0% FRK
81% 72% 61% 48% EUR

λ1=1

λ1=3

λ1=10

λ1=30

 
Table 6. Pareto Optimality with dual benchmarks and dual risk regimes 

 

                                                                                                                                                                                    
5 See Wang (1999) for the use of standard portfolio optimizers in multiple benchmark optimization.  
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λ2=1 λ2=3 λ2=10 λ2=30
0% 0% 20% 35% USD
99% 52% 27% 17% Pound
0% 20% 39% 43% Yen
0% 28% 14% 8% AUSD
0% 0% 0% 0% FRK
0% 0% 0% 0% EUR
0% 0% 8% 25% USD
82% 85% 44% 27% Pound
0% 0% 32% 39% Yen
2% 15% 16% 9% AUSD
0% 0% 0% 0% FRK
16% 0% 0% 1% EUR
0% 0% 5% 21% USD
28% 42% 32% 18% Pound
0% 2% 22% 31% Yen
1% 8% 10% 6% AUSD
0% 0% 0% 0% FRK
7% 48% 31% 24% EUR
0% 0% 6% 18% USD
16% 23% 18% 11% Pound
0% 4% 16% 24% Yen
1% 5% 6% 3% AUSD
0% 0% 0% 0% FRK
83% 68% 54% 44% EUR

λ1=1

λ1=3

λ1=10

λ1=30

 
Table 7. Pareto Optimality with dual benchmarks and single  (lnormal) risk regime 

5. Pareto Optimality and Non-Normality  
 
Although we established non-normality as one of the stylized facts in currency markets we 

have not incorporated it yet. We assume investors exhibit constant relative risk aversion of 

the form 11
1

j

j

j
m WmU γ

γ
−

−=

M mn

 where W w  denotes wealth in return scenario 

,

(1
1N

m nn=
= +∑ )mnR

1m = L R  reflects the return of asset  in scenario , and n m jγ  is the risk aversion 

parameter for utility function . Problem (1.5) under general return assumptions becomes 

then  

j

(1.7) ( )1
1, 0

max min M j
mm mj

U
=≥

 
 ∑w w

 

 
which is equivalent to maximizing the minimum expected utility. Currencies that exhibit 

positive skewness (Yen) will be will be favoured relative to currencies that show negative 

skewness (UK Pound). The results are shown in Table 8 and Table 9. We see that the Yen 

(positively skewed) is favoured versus Pound and Australian Dollar (both negatively 

skewed.) relative to the solution assuming normality. For very high risk aversions both 

solutions more or less coincide.  
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γ2=3 γ2=10 γ2=30
0% 0% 27% USD
82% 54% 20% Pound
0% 22% 42% Yen
18% 24% 11% AUSD
0% 0% 0% FRK
0% 0% 0% EUR
0% 1% 22% USD
22% 45% 23% Pound
1% 19% 36% Yen
7% 15% 10% AUSD
0% 0% 0% FRK
61% 21% 9% EUR
1% 0% 14% USD
22% 22% 15% Pound
1% 10% 24% Yen
4% 7% 7% AUSD
1% 0% 0% FRK
72% 61% 40% EUR

γ1=3

γ1=10

γ1=30

 

Table 8. Pareto Optimality under Normality 

 

γ2=3 γ2=10 γ2=30
0% 5% 32% USD

18% 19% 7% Pound
71% 63% 55% Yen
11% 13% 5% AUSD
0% 0% 0% FRK
0% 0% 0% EUR
1% 3% 25% USD

26% 23% 12% Pound
31% 43% 47% Yen
5% 8% 5% AUSD
0% 0% 0% FRK

38% 23% 11% EUR
0% 2% 17% USD

10% 11% 8% Pound
12% 21% 32% Yen
1% 4% 3% AUSD
0% 0% 0% FRK

76% 62% 41% EUR

γ1=10

γ1=30

γ1=3

 

Table 9.  Pareto Optimality under Non Normality 
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6. Summary 
 

The optimal currency allocation problem is descibed as a multiple benchmark optimization 

problem. In contrast to traditional solutions we showed how a maxmin approach can be 

successfully applied to the currency allocation problem, including alternative risk aversions, 

risk regimes, and benchmarks. We also extended the above analysis to incorporate 

nonormality in return data using scenario optimizaton as the most general form of porfolio 

optimization. The proposed methodology is equally applicable to central banks of developed 

as well as developing countries as it allows complete freedom in the specification of 

benchmarks, relative importance of benchmark relative risks as well as risk regimes and 

normality assumptions. It is exactly the definition of these parameters that will determine the 

optimal solution for any given central bank.  
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Appendix: Selected S-Plus Code 
 

Rivalling Risk Regimes 
 
# function to calculate hectic versus normal correlation matrices and 

standard deviations 
# methodology by Chow/Kritzman (1999)  
# Dr. Scherer, November 2001  
 
hectic.vs.normal<-function(datamatrix, percentage){ 
# inputs 
# expects rectangular datamatrix (no missing values)  
# first row contains series names 
# dimension T x k  
# no first date column 
# perecentage defines percentages of bad times   
# dimension scalar 0.9 means 90%  
# outputs  
# calculates kxk correlation and covariance matrices 
# and kx1 volatility vectors 
 
series.names<-names(datamatrix) 
# calculate distribution from datamatrix 
covar<-var(datamatrix) 
mean<-as.matrix(apply(datamatrix, 2, mean),ncol=1) 
# set up distance vector and calculate distances 
distance<-matrix(0,ncol=1, nrow=nrow(datamatrix)) 
for(i in 1:nrow(datamatrix)){distance[i]<-(datamatrix[i,]-

mean)%*%solve(covar)%*%(t(datamatrix[i,])-mean)} 
# calculate correlation matrices 
normal<-matrix(datamatrix[distance<=qchisq(percentage, ncol(datamatrix))], 

ncol=ncol(datamatrix)) 
stdev.normal<-(apply(normal,2,stdev)) 
names(stdev.normal)<-series.names 
hectic<-matrix(datamatrix[distance>qchisq(percentage, ncol(datamatrix))], 

ncol=ncol(datamatrix)) 
stdev.hectic<-(apply(hectic,2,stdev)) 
names(stdev.hectic)<-series.names 
cor.normal<-cor(normal) 
cor.hectic<-cor(hectic) 
cov.normal<-var(normal) 
cov.hectic<-var(hectic) 
dimnames(cor.normal)<-list(series.names, series.names) 
dimnames(cor.hectic)<-list(series.names, series.names) 
dimnames(cov.normal)<-list(series.names, series.names) 
dimnames(cov.hectic)<-list(series.names, series.names) 
 
# create list of outputs 
list("normal.correlation" = cor.normal , "hectic.correlation" = cor.hectic, 

"stdev.normal" = stdev.normal, "stdev.hectic"=stdev.hectic, "normal 
covariance" = cov.normal, "hectic covariance"=cov.hectic) 

} 
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Pareto Optimality and Dual Benchmark Optimisation 
 
model.pareto<-function(mean.return, cov.1, cov.2, bench.1, bench.2, 

lambda.1, lambda.2){ 
dimnames(mean.return)<-NULL 
dimnames(cov.1)<-NULL 
dimnames(cov.2)<-NULL 
dimnames(bench.1)<-NULL 
dimnames(bench.2)<-NULL 
# index 
I <- Set() 
J <- Set() 
i <- Element(set=I) 
j <- Element(set=J) 
# parameter 
Q1 <- Parameter(cov.1, index = dprod(i, j)) 
Q2 <- Parameter(cov.2, index = dprod(i, j)) 
b1 <- Parameter(list(1:length(mean.return), bench.1), index=i) 
b2 <- Parameter(list(1:length(mean.return), bench.2), index=i) 
lambda.1<-Parameter(lambda.1) 
lambda.2<-Parameter(lambda.2) 
r.bar <- Parameter(list(1:length(mean.return), mean.return), index=i) 
# variable 
w <- Variable(index = i) 
U.min<-Variable() 
# expressions for tracking error (te) 
sigma.1 <- Expression(index = i) 
sigma.2 <- Expression(index = i) 
sigma.3 <- Expression(index = i) 
sigma.4 <- Expression(index = i) 
sigma.1[j] ~ Sum((w[i]-b1[i]) * Q1[i,j], i) 
sigma.2[j] ~ Sum((w[i]-b1[i]) * Q2[i,j], i) 
sigma.3[j] ~ Sum((w[i]-b2[i]) * Q1[i,j], i) 
sigma.4[j] ~ Sum((w[i]-b2[i]) * Q2[i,j], i) 
U.1 <- Expression() 
U.2 <- Expression() 
U.3 <- Expression() 
U.4 <- Expression() 
U.1 ~ Sum(r.bar[i]*(w[i]-b1[i]), i)-lambda.1*Sum((w[i]-b1[i])*sigma.1[i],i) 
U.2 ~ Sum(r.bar[i]*(w[i]-b1[i]), i)-lambda.1*Sum((w[i]-b1[i])*sigma.2[i],i) 
U.3 ~ Sum(r.bar[i]*(w[i]-b2[i]), i)-lambda.2*Sum((w[i]-b2[i])*sigma.3[i],i) 
U.4 ~ Sum(r.bar[i]*(w[i]-b2[i]), i)-lambda.2*Sum((w[i]-b2[i])*sigma.4[i],i) 
U.1 >= U.min 
U.2 >= U.min 
U.3 >= U.min 
U.4 >= U.min 
U <- Objective(maximize) 
U ~ U.min 
w[i] >= 0 
Sum(w[i], i) == 1 
} 
system.pareto<-System(model.pareto, mean.return, cov.1, cov.2, bench.1, bench.2, 

lambda.1=0, lambda.2=30) 
solve(system.pareto) 
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