Integrated Suite of 12 Instruments for Interactive, Cost-Effective, Multidisciplinary, Hands-On Learning

NI ELVIS II NEW!

- Design and prototyping platform for circuit design, control, instrumentation, telecommunications, and embedded/MCU experiments
- Complete integration with Multisim for circuits and electronics
- Hi-Speed USB plug-and-play interface
- Virtual instrumentation suite includes oscilloscope, digital multimeter (DMM), function generator, variable power supply, Bode analyzer, arbitrary waveform generator, dynamic signal analyzer (DSA), voltage/current analyzer with LabVIEW source code
- Completely open and customizable in LabVIEW graphical system design environment
- Express VIs for point-and-click configuration of customized instruments in LabVIEW and LabVIEW SignalExpress

Workstation Features

- New, sleek design with an open connector architecture for third-party boards
- Isolated DMM for better signal integrity
- Short-circuit and high-voltage protection with resettable fuse board
- Variable power supplies – manual or programmatic control
- Function generator – manual or programmatic control
- ±15 and ±5 V supply available

Overview

NI ELVIS, an educational design and prototyping platform based on NI LabVIEW graphical system design software, is a leading tool for teaching concepts in areas such as instrumentation, circuits, control, communication, and embedded design in a hands-on, interactive manner. It features a new design and an integrated suite of the 12 most commonly used instruments in a compact, rugged, laboratory-friendly form factor. NI ELVIS II includes a Hi-Speed USB interface that delivers a complete design and prototyping platform you can use from lower-division freshman classes to advanced senior classes to help students learn concepts from circuit design to telecommunications.

<table>
<thead>
<tr>
<th>Features</th>
<th>NI ELVIS I</th>
<th>NI ELVIS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 integrated instruments</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCI/PCMCIA</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Integrated USB</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Isolated digital multimeter</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>NI-DAGmx software</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>True Multisim integration</td>
<td>–</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1. NI ELVIS I versus NI ELVIS II

NI ELVIS II is a primary component of the NI electronics education platform along with NI Multisim, a leading tool for SPICE simulation and schematic capture in academia, and the NI LabVIEW graphical system design platform. Students can simulate theoretical concepts in Multisim, prototype the actual circuit with NI ELVIS II, and compare the simulation with real-world measurements using LabVIEW and LabVIEW SignalExpress. With NI ELVIS II and Multisim 10.1, learning circuits becomes more interactive using features such as 3D NI ELVIS II as well as the ability to access NI ELVIS II instruments inside the Multisim environment and switch from simulated data to real-world data with a single mouse click. For more information on the NI electronics education platform, visit ni.com/eep.

![NI ELVIS Education Platform](image)

Figure 1. The NI ELVIS Education Platform
LabVIEW Accessibility
NI ELVIS II is completely customizable in LabVIEW and includes Express VIs for each of the 12 instruments in its virtual instrumentation suite. This provides point-and-click configuration capabilities for the individual instruments, which makes building customizable instruments very easy. You also can use NI ELVIS II with LabVIEW SignalExpress to help students compare simulated data from Multisim and real-world data from NI ELVIS and create interactive reports for class assignments.

Embedded/MCU design with Freescale Microcontroller Student Learning Kit (SLK) featuring the following application modules:
- 8-bit HCS08
- 16-bit HCS12/HCS12X/DSP
- 32-bit ColdFire processor
- RF transceiver

Open Architecture with Plug-In Boards for Multidisciplinary Education
NI ELVIS II is an open architecture, which helps leading teaching solution providers take advantage of the platform. Plug-in boards for NI ELVIS II are available from the following companies:
- Control design with Quanser trainers
 - Quanser QNET DC motor
 - Quanser QNET inverted pendulum
 - Quanser QNET HVAC system
- Embedded/MCU design with Freescale Microcontroller SLK
- Telecommunications with Emona DATEx telecommunications trainer for NI ELVIS
- Other Companion Products
 - Circuits – Electronics education platform with Multisim
 - Embedded/DSP – Analog Devices ADSP-BF537 Blackfin Processor
 - Sensors – Vernier sensor adapters for NI ELVIS

Ordering Information
Bundles
NI ELVIS II Circuit Design Bundle ..780379-01
Includes NI ELVIS II, Multisim, LabVIEW, LabVIEW SignalExpress, and user manuals.
NI ELVIS II Basic Bundle .. 780378-01
Includes NI ELVIS II workstation, NI ELVIS II prototyping board, NI LabVIEW (required), and user manuals.
NI ELVIS II instrumentation design and training platform....780380-01
NI ELVIS II prototyping board ..188432-01

BUY NOW!
For complete product specifications, pricing, and accessory information, call 800 813 3693 (U.S.) or go to ni.com/EEP.
Specifications
Performance is typical at 25 °C unless otherwise specified.

Analog Input
- Channels: 8 differential or 16 single-ended
- ADC resolution: 16 bits
- Absolute accuracy: Refer to NI ELVIS II Specifications at ni.com/manuals
- Maximum sampling rate: 1.25 MS/s single channel, 1.00 MS/s multichannel (aggregate)
- Input range: ±10 V, ±5 V, ±2 V, ±1 V, ±0.5 V, ±0.2 V, ±0.1 V
- Maximum working voltage for analog inputs (signal + common mode): ±11 V of AIGND
- CMRR (DC to 60 Hz): 90 dB
- Input impedance
 - Device on – AI+ or AI- to AIGND: >10 GΩ II 100 pF
 - Device off – AI+ or AI- to AIGND: 820 Ω
- Input bias current: ±100 pA
- Crosstalk @100 kHz
 - (adjacent channel): -70 dB
 - (nonadjacent channel): -80 dB
- Small signal bandwidth (-3 dB): 1.2 MHz
- Input FIFO size: 4095 samples
- Scan list memory: 4095 entries
- Data transfers: USB signal stream, programmed I/O
- Overvoltage protection (AI±, AISENSE)
 - Device on: ±25 V for up to four lines
 - Device off: ±15 V for up to four lines
- Input current during overvoltage condition: ±20 mA max per line

Analog Triggers
- Number of triggers: 1
- Source: Al<0..15>, ScopeCH0, ScopeCH1
- Functions:
 - Start trigger, reference trigger, pause trigger, sample clock, convert clock, sample clock timebase
- Source level: ±Full scale
- Resolution: 10 bits
- Modes: Analog edge triggering, analog edge triggering with hysteresis, and analog window triggering

Arbitrary Waveform Generator/Analog Output
- Channels: 2
- DAC resolution: 16 bits
- Maximum update rate
 - 1 channel: 2.8 MS/s
 - 2 channels: 2.0 MS/s
- Timing resolution: 50 ns
- Output range: ±10 V, ±5 V
- Data transfer: USB signal stream, programmed I/O
- AO waveform modes: Nonperiodic waveform, periodic waveform regeneration from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update
- Slew rate: 20 V/μs

Digital I/O and PFI
- Channels: 24 DIO (Port 0), 15 PFI (ports 1 and 2)
- Direction control: Each line individually programmable as input or output
- Pull-down resistor: 50 kΩ typ, 20 kΩ min
- Input voltage protection: ±20 V on up to two pins

PFI/Port 1/Port 2 Functionality
- Functionality: Static digital input, static digital output, timing input, timing output
- Debounce filter settings
- Overvoltage protection (AI±, AISENSE)

General-Purpose Counter/Timers
- Counter/timers: 2
- Resolution: 32 bits
- Counter measurements: Edge counting, pulse, semiperiod, period, two-edge separation
- Position measurements: X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
- Output applications: Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
- Internal base clocks: 80, 20, 0.1 MHz
- External base clock frequency: 0 to 20 MHz
- Base clock accuracy: 50 ppm
- Maximum frequency: 1 MHz
- Inputs: Gate, source, HW_Arm, Aux, A, B, Z, Up_Down

Frequency Generator
- Channels: 1
- Base clocks: 10 MHz, 100 kHz
- Divisors: 1 to 16
- Maximum frequency: 1 MHz
- Base clock accuracy: 50 ppm
- Default output line: PFI 14/FREQ_OUT

External Digital Triggers
- Source: TRIG BNC or any PFI
- Polarity: Software-selectable for most signals
Analog Input Function
- Start trigger, reference trigger, pause trigger, sample clock, convert clock, sample clock timebase

Analog Output Function
- Start trigger, pause trigger, sample clock, sample clock timebase

Counter/Timer Function
- Gate, source, HW_Arm, Aux, A, B, Z, Up_Down

Digital Multimeter (DMM)
Isolated Functions
- DC voltage, AC voltage, DC current, AC current, resistance, diode
- Isolation level: 60 VDC/20 Vrms, Installation Category I
- Resolution: 5 1/2 digits
- Input impedance: 11 MΩ
- Input coupling: DC (DC voltage, DC current, resistance, diode), AC (AC voltage, AC current)

Nonisolated Functions
- Capacitance, inductance

Voltage Measurement
DC Ranges
- 100 mV, 1 V, 10 V, 60 V
- Accuracy: Refer to NI ELVIS II Specifications at ni.com/manuals
- Input frequency range (AC mode): 40 Hz to 20 kHz

AC Ranges
- 200 mVrms, 2 Vrms, 20 Vrms
- Accuracy: Refer to NI ELVIS II Specifications at ni.com/manuals

Current Measurement
DC Range
- 2 A
- Accuracy: Refer to NI ELVIS II Specifications at ni.com/manuals
- Input frequency range (AC mode): 40 Hz to 5 kHz
- Input protection: Fast 3.15 A 250 V, fast-acting user-replaceable fuse

AC Ranges
- 500 mA rms, 2 A rms
- Accuracy: Refer to NI ELVIS II Specifications at ni.com/manuals

Resistance Measurement
Ranges
- 100 Ω, 1 kΩ, 10 kΩ, 100 kΩ, 1 MΩ, 100 MΩ
- Accuracy: Refer to NI ELVIS II Specifications at ni.com/manuals

Diode Measurement
Range
- 1 V

Capacitance Measurement
Range
- 50 pF to 500 uF

Accuracy
- 1%

Inductance Measurement
Range
- 100 µH to 100 mH

Accuracy
- 1%

Function Generator
Channels
- 1

Output Waveform Type
- Sine, square, triangle

Frequency Range
- 0.186 Hz to 5 MHz (sine)
- 0.186 Hz to 1 MHz (square and triangle)

Frequency Resolution
- 0.186 Hz

Waveform Amplitude Range
- 10 Vp

Waveform Amplitude Resolution
- 10 bits

Waveform Amplitude Accuracy
- 1% ±15 mV

Waveform Offset Range
- ±5 V

Duty Cycle Range
- 0 to 100%

Output Impedance
- 50

Maximum Output Current
- 100 mA

SIN + DISTORTION
- -40 dB max
- 3 MHz-3 dB to 5 MHz

Modulation
- 2 (AM and FM)
- ±10 V
- 10%/V
- 20%/V

Oscilloscope
Channels
- 2

Input Coupling
- AC or DC

Input Impedance
- 1 MΩ || 25 pF

Bandwidth (-3 dB)
- 1.7 MHz

DC Accuracy
- Refer to NI ELVIS II Specifications at ni.com/manuals

Dynamic Signal Analyzer
Accuracy
- Refer to NI ELVIS II Specifications at ni.com/manuals

Frequency Resolution
- Software-controllable

Bode Analyzer
Accuracy
- Refer to NI ELVIS II Specifications at ni.com/manuals

Phase Accuracy
- 1 Hz to 200 kHz

Two-Wire Current-Voltage Analyzer
Current Range
- ±40 mA

Voltage Sweep Range
- ±10 V

Integrated Suite of 12 Instruments for Interactive, Cost-Effective, Multidisciplinary, Hands-On Learning
Three-Wire Current-Voltage Analyzer

- Supported devices: NPN and PNP transistors
- Minimum base current increment: 0.48 µA
- Maximum collector current: ±40 mA
- Maximum collector voltage: ±10 V

Impedance Analyzer

Measurement frequency range: 1 Hz to 35 kHz

Power Supplies

+15 V Supply
- Output voltage (no load): +15 V ±5%
- Maximum output current: 500 mA
- Short circuit protection: Resettable circuit breaker

-15 V Supply
- Output voltage (no load): -15 V ±5%
- Maximum output current: 500 mA
- Short circuit protection: Resettable circuit breaker

+5 V Supply
- Output voltage (no load): +5 V ±5%
- Maximum output current: 2 A
- Short circuit protection: Resettable circuit breaker

Positive Variable Supply

Output voltage: 0 to +12 V
- Voltage setpoint resolution: 10 bits
- Voltage accuracy (no load): 100 mV
- Maximum output current: 500 mA
- Short circuit protection: Self-resetting current limiter

Negative Variable Supply

Output voltage: 0 to -12 V
- Voltage setpoint resolution: 10 bits
- Voltage accuracy (no load): 100 mV
- Maximum output current: 500 mA
- Short circuit protection: Self-resetting current limiter

Calibration

Recommended warm-up time: 15 minutes
- Calibration Interval: 1 year

Communication

- Bus interface: Hi-Speed USB
- USB signal stream: 4 streams; can be used for analog input, analog output, and counter/timers

Physical

Dimensions: 34.3 by 28.0 by 7.6 cm (14.5 by 11 by 3 in.)
- Weight (with prototyping board): 1.9 kg (4.2 lb)

Environmental

- Operating temperature: 10 to 35 °C
- Storage temperature: 65 °C
- Humidity: 10 to 90% relative humidity, noncondensing
- Maximum altitude: 2000 m
- Pollution degree (indoor use only): 2

Safety and Compliance

Safety

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:
- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note: For UL and other safety certifications, refer to the product label or visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Electromagnetic Compatibility

This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement, control, and laboratory use:
- EN 61326 EMC requirements; Minimum Immunity
- EN 55011 Emissions; Group 1, Class A
- CE, C-Tick, ICES, and FCC Part 15 Emissions; Class A

Note: For EMC compliance, operate this device according to product documentation.

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:
- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Note: Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers: At the end of their life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.
NI Services and Support

NI has the services and support to meet your needs around the globe and through the application life cycle – from planning and development through deployment and ongoing maintenance. We offer services and service levels to meet customer requirements in research, design, validation, and manufacturing. Visit ni.com/services.

Training and Certification

NI training is the fastest, most certain route to productivity with our products. NI training can shorten your learning curve, save development time, and reduce maintenance costs over the application life cycle. We schedule instructor-led courses in cities worldwide, or we can hold a course at your facility. We also offer a professional certification program that identifies individuals who have high levels of skill and knowledge on using NI products. Visit ni.com/training.

Professional Services

Our NI Professional Services team is composed of NI applications and systems engineers and a worldwide National Instruments Alliance Partner program of more than 600 independent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

OEM Support

We offer design-in consulting and product integration assistance if you want to use our products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

Local Sales and Technical Support

In offices worldwide, our staff is local to the country, giving you access to engineers who speak your language. NI delivers industry-leading technical support through online knowledge bases, our applications engineers, and access to 14,000 measurement and automation professionals within NI Developer Exchange forums. Find immediate answers to your questions at ni.com/support.

We also offer service programs that provide automatic upgrades to your application development environment and higher levels of technical support. Visit ni.com/ssp.

Hardware Services

NI Factory Installation Services

NI Factory Installation Services (FIS) is the fastest and easiest way to use your PXI or PXI/SCXI combination systems right out of the box. Trained NI technicians install the software and hardware and configure the system to your specifications. NI extends the standard warranty by one year on hardware components (controllers, chassis, modules) purchased with FIS. To use FIS, simply configure your system online with ni.com/pxiadvisor.

Calibration Services

NI recognizes the need to maintain properly calibrated devices for high-accuracy measurements. We provide manual calibration procedures, services to recalibrate your products, and automated calibration software specifically designed for use by metrology laboratories. Visit ni.com/calibration.

Repair and Extended Warranty

NI provides complete repair services for our products. Express repair and advance replacement services are also available. We offer extended warranties to help you meet project life-cycle requirements. Visit ni.com/services.