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Abstract 
We present some aspects of advanced numerical analysis for the pricing and risk managment of financial 
derivativess within a partial differential equation framework.  

Introduction 
The Pricing of structured financial instruments is a major issue in modern risk management, 
and the more complicated the instruments become, the more it is important to use advanced 
numerical pricing schemes. In this article, we concentrate on schemes for financial models 
which lead to partial differential equations. This covers a wide range of models, like Black-
Scholes, certain models of stochastic volatility and the wide range of (one or more factor) 
short rate models like Hull-White and Black-Karasinski. 
 

Green´s Functions and Adaptive Integration 
Let us start with the most easy case of classical Black-Scholes: Assume, the underlying equity 
follows a random walk 
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with dW being the increment of a standard Wiener process. The Black-Scholes trick 
constructs a risk-free portfolio of being short one option and long delta shares which leads to 
an evolution of the portfolio value which is risk-free and therefore has to lead to the same 
return as the risk-free cash account. The value of a European option within this framework 
satisfies the Black Scholes equation 
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This is a parabolic differential equation backwards in time. To make it well-posed (meaning 
uniquely solvable with the solution depending continuous on the data), one has to specify an 
end condititon (the pay-off function at maturity) and boundary conditions at zero and at 
infinity. 
 
The solution of this problem is given by 
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with 
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for arbitrary payoff-functions. This can be utilized for numerical schemes: European options 
with arbitrary payoffs can be priced by implementing numerical integration schemes like high 
order Gaussian integration. If one is interested in pricing Bermudan options, one can construct 
a grid at time t [Bermudan day k], and obtain the option values there by making a time step 
until t [Bermudan day k+1] and using the same representation as above. At the future time 
step, typically the Gauss integration points will be no grid points, hence interpolation 
techniques should be applied.  
 

 
Picture 1:Value of a chooser option on an equity paying discrete dividends. Expiry of the chooser option is in the 
front. Results obtained by Adaptive Integration, as implemented in the UnRisk PRICING ENGINE. 
 
Similar techniques are available for one factor interest rate models. The differential equation 
here looks for example [Wilmott] like this: 
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The Green Function here looks quite complicated [Shreve, pp. 300-301], because the 
underlying r is also used for discounting (which is different to Black-Scholes or Black 76). 
This leads to double integrals, which can be reduced to single integrals in the case of, say, a 
one-factor Hull-White model. 

Upwind Techniques and Streamline Diffusion 
The partial differential equations obtained by using (one or more-factor) short rate models or 
by modelling convertible bonds considering stochastic equity and stochastic interest rates can 
be interpreted as convection-diffusion-reaction equations. This type of equation is typically 
found in applications in continuum mechanics. The typical shape of a two factor interest rate 
model is 
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where the coefficient functions are determined by the special interest rate model. 
 
The numerical solution using standard discretisation methods cause severe problems, resulting 
in high oscillations in the computed values. It is the drift term which is mainly responsible for 
these difficulties and which forces us to use specifically developed methods for the numerical 
solution. These methods have to use so-called upwind strategies, in order to obtain stability 
meaning, very roughly speaking, that you use information at those points where this 
information comes from (“you follow the direction of the flow”).  In trinomial tree methods, it 
is the up-branching and down-branching which takes into account the upwinding and leads to 
nonnegative weights which correspond to stability.  
 
The standard streamline diffusion method, which was introduced by Hughes and Brooks for 
the numerical solution of convection dominated convection-diffusion equations, is such a 
method and is based on the finite element method. It achieves stability by adding artificial 
diffusion into the direction of the streamlines, which are mainly determined by the drift. In 
addition to its good global stability properties it is a method of higher order of convergence, 
which yields additional advantages compared for example to simple upwinding with finite 
differences.  
The picture shows the value of an option on a zero coupon bond as a function of the short rate 
r and of the second state variable u of the Hull-White model like in [Rebonato]. Note that this 
picture should demonstrate the stability and robustness properties of the streamline diffusion 
method. 
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Image source picture 2: MathConsult GmbH, Linz 
 



© MathConsult GmbH, 2003 

Inverse Problems and Model Calibration 
For the pricing of financial derivatives, the user has to provide input data which describe the 
random behaviour of the underlying process. Typically the volatility is the most critical input. 
The standard routine in pricing complex structures is, first, to identify the model parameters 
from market prices of liquid and actively traded instruments, and second, use the obtained 
parameters in advanced pricing schemes like the ones described above. 
 
Calibrating model parameters in our PDE framework means the identification of parameters 
in parabolic differential equations, a problem which is ill-posed in the sense of Hadamard. 
This means: 

a) For given market data, a solution (model parameters) need not exist, or 
b) If it exists, the solution need not be unique, or 
c) The solution need not depend continuously on the data, meaning that arbitrarily small 

perturbations of the data might lead to arbitrarily large perturbations of the solution. 
For the robust solution of ill-posed problems, so called regularization techniques have to be 
applied to obtain stable and robust algorithms. 
 
Consider the problem of determining a local volatility function (in the sense of Dupire) �(S) 
from prices of options with one maturity but with different strike prices. As long as there is no 
noise in the data, output least square approaches work quite well as the following picture 
demonstrates 
 

 
Image Source pictures 3,4,5: Industrial Mathematics Institute, University of Linz 
 
The red line is the (unknown) volatility function, and the spot price of the equity is assumed 
to be 1. As expected, there is good identification as long as we are not too deep in the money 
or to deep out of the money. At the extreme ends, the option prices do not contain much 
information and therefore the solution identified (blue) depends on the starting level (green). 
If you add noise to the input data (and there is always noise in option prices due to bid-offer 
spreads), the situation becomes nasty without regularization. 
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With (quite small) noise levels of 0.1 and 0.5 percent, output least squares techniques lead to 
oscillating results. But regularization helps: 
 

 
 
The dotted curve shows the result for a good choice of the regularisation parameter, the blue 
curve is obtained from under-regularisation, the green one for over-regularisation. A 
posteriori techniques (which do not need knowledge on the true solution) for choosing 
optimal regularization strategies are available. 
 

Resume 
Advanced numerical techniques which take into account accuracy, speed, stability and 
robustness are a must in modern financial engineering. Surprisingly (or not so surprisingly?), 
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algorithms from engineering applications like computational multiphysics problems can and 
should be applied to computational finance problems. 
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